K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2016

a)1272+146.127+732=1272+2.127.73+732=(127+73)2=2002=40000

b)98.28-(184-1).(184+1)=188-[(184)2-12]=188-(188-1)=188-188+1=1

c)1002-992+982-972+...+22-12=(100-99)(100+99)+(98-97)(98+97)+...+(2-1)(2+1)

7 tháng 10 2018

 \(M=1995^2-1994.1996\)       

     \(=1995^2-\left(1995-1\right)\left(1995+1\right)\)

     \(=1995^2-\left(1995^2-1\right)=1\)

\(N=9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)

   \(=18^8-\left(18^8-1\right)=1\)

\(K=99^3+3.99^2+3.99+1\)

   \(=99^3+3.99^2.1+3.99.1^2+1^3\)

   \(=\left(99+1\right)^3\)

   \(=100^3=1000000\)

Chúc bạn học tốt.

15 tháng 7 2020

Bài làm:

c) \(M=1995^2-1994.1996=1995^2-\left(1995-1\right)\left(19995+1\right)=1995^2-1995^2+1^2=1\)

d) \(N=9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)=18^8-18^8+1^2=1\)

e) \(K=99^3+3.99^2+3.99+1=\left(99+1\right)^3=100^3=1000000\)

Học tốt!!!!!

14 tháng 7 2015

Câu b đúng r mà trieu dang

13 tháng 7 2015

như thế này chứ:

A=1002-992+982-972+...+22-12

B=12-22+32-42+...-20082-20092

C=3.(22+1)(24+1)(28+1)(216+1)-232

23 tháng 7 2019

a) \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+....+\left(2^2-1^2\right)\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+....+\left(2-1\right)\left(2+1\right)\)

\(=199+195+....+3\)

\(=\frac{\left(199+3\right)\left[\left(199-3\right):4+1\right]}{2}\)

\(=5050\)

1: Ta có: \(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

2: Ta có: \(100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=100+99+98+97+...+2+1\)

=5050