K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2019

\(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)=2\left(xy+yz+xz\right)\)

\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)(1)

Vì tổng bình phương của các số luôn lớn hơn hoặc bằng 0, mà theo (1) ta có :

\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}\Leftrightarrow x=y=z}}\)

15 tháng 3 2016

mk mới hok lớp 6

15 tháng 3 2016

em mới hok lớp 6 thui chị ạ

chị thông cảm nha

31 tháng 7 2016

Ta có: xy=a ; yz=b ; zx=c

=> \(x^2.y^2.z^2=abc\)

\(x^2.y^2=a^2\)

\(y^2.z^2=b^2\)

\(z^2.x^2=c^2\)

Vậy: \(x^2.b^2=abc\)

\(a^2.z^2=abc\)

\(y^2.c^2=abc\)

\(x^2=\frac{ac}{b};y^2=\frac{ab}{c};z^2=\frac{bc}{a}\)

Vậy: \(x^2+y^2+z^2=\frac{ac}{b}+\frac{ab}{c}+\frac{bc}{a}=\frac{a^2.b^2+b^2.c^2}{abc}\)

20 tháng 12 2020

Sao chép trên Olm/

 

22 tháng 2 2015

Đặt x2 = yz (1) ; y2 = xz (2) ; z2 = xy (3)

Từ (1) => z= x2/y. Từ (2) => z = y2/x => x2/y = y2/x => x3 = y3 => x = y (*)

Tương tự : Từ (1) => y =x2/z. Từ (3) => y = z2/x => x2/z = z2/x => x3 = z3 => x = z(**)

Từ (*) và (**) suy ra x = y = z

1 tháng 4 2018

thanks :)))

26 tháng 3 2017

\(x^2=yz\Leftrightarrow\frac{x}{y}=\frac{z}{x};y^2=xz\Leftrightarrow\frac{y}{z}=\frac{x}{y};z^2=xy\Leftrightarrow\frac{z}{x}=\frac{y}{z}\)

=>\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=>x=y;y=z;z=x

=>x=y=z

26 tháng 3 2017

Ta có: \(x^2=yz\Leftrightarrow\frac{x}{z}=\frac{y}{x}\)

         

7 tháng 1 2017

Đặt x^ 2 = yz (1) ; y ^2 = xz (2) ; z ^2 = xy (3)

Từ (1) => z= x^ 2 /y. Từ (2) => z = y ^2 /x => x^2 /y = y^2 /x => x ^3 = y ^3 => x = y (*)

Tương tự : Từ (1) => y =x^ 2 /z. Từ (3) => y = z^ 2 /x => x^ 2 /z = z^ 2 /x => x ^3 = z^3 => x = z(**)

Từ (*) và (**) suy ra x = y = z 

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

7 tháng 1 2017

Đặt x^ 2 = yz (1) ; y ^2 = xz (2) ; z ^2 = xy (3)

Từ (1) => z= x^ 2 /y. Từ (2) => z = y ^2 /x => x^2 /y = y^2 /x => x ^3 = y ^3 => x = y (*)

Tương tự : Từ (1) => y =x^ 2 /z. Từ (3) => y = z^ 2 /x => x^ 2 /z = z^ 2 /x => x ^3 = z^3 => x = z(**)

Từ (*) và (**) suy ra x = y = z 

CHÚC BẠN HỌC GIỎI

TK cho thằng này đi

25 tháng 9 2017

Bạn tham khảo ở đây nhé.

Câu hỏi của Trịnh Hương Quỳnh - Toán lớp 7 - Học toán với OnlineMath

13 tháng 3 2020

\(x^2=yz,y^2=xz,z^2=xy\Rightarrow x^2+y^2+z^2=xy+yz+zx\Leftrightarrow2x^2+2y^2+2z^2=2xy+2xz+2y\Leftrightarrow\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow x=y,y=z,x=z\Leftrightarrow x=y=z\)