K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

vì 6x2 và 74 \(⋮2\)

=> 5y2 \(⋮2\)

=> y2 \(⋮2\)( vì (5,2) = 1 )

=> y = 2 ( vì 2 là số nguyên tố chẵn duy nhất )

thay y = 2 vào bài ta được:

6x2 + 5.4 = 74

6x2 = 54

x2 = 9 

=> x = 3

vậy x = 3 và y = 2

8 tháng 4 2017

 6x2 + 5y2 = 74 (1) 
Ta có : 5x2 + 5y2 =< 6x2 + 5y2 =< 6x2 + 6y2
<=> 5(x2 + y2) =< 74 =< 6(x2 + y2
<=> 12,3 =< x2 + y2 =< 14,8 
<=> 13 =< x2 + y2 =< 14 (vì x, y tự nhiên => x2 + y2 tự nhiên) 
Trường hợp 1 : x2 + y2 = 13 (2) 
Ta có hệ : 
6x2 + 5y2 = 74 (1) 
x2 + y2 = 13 (2) 
<=> 6x2 + 5y2 = 74 
5x2 + 5y2 = 65 
Trừ 2 phương trình : x2 = 9 <=> x = 3 (vì x >= 0) 
Thay vào (2) y2 = 13 - x2 = 13 - 9 = 4 <=> x = 2 
Nghiệm : (x ; y) = (2 ; 3) 
Trường hợp 2 : x2 + y2 = 14 (4) 
Ta có hệ : 
6x2 + 5y2 = 74 (1) 
x2 + y2 = 14 (3) 
<=> 6x2 + 5y2 = 74 
5x2 + 5y2 = 70 
Trừ 2 phương trình : x2 = 4 <=> x = 2 
Thay vào (3) : y2 = 14 - 4 = 10 <=> y = \(\sqrt{10}\) (loại) 
Vậy phương trình có nghiệm nguyên duy nhất là (x ; y) = (2 ; 3) .

9 tháng 4 2017

Ta có:

\(6x^2+5y^2=74\left(1\right)\)

Từ \(\left(1\right)\Rightarrow\hept{\begin{cases}x^2+1⋮5\\0< x^2\le12\end{cases}\Rightarrow\orbr{\begin{cases}x^2=4\\x^2=9\end{cases}}}\)

Với \(x^2=4\Rightarrow y^2=10\) (loại)

Với \(x^2=9\Rightarrow y^2=4\) (thỏa mãn)

\(\Rightarrow\hept{\begin{cases}x^2=9\\y^2=4\end{cases}\Rightarrow\hept{\begin{cases}x=\sqrt{9}\\y=\sqrt{4}\end{cases}\Rightarrow}\hept{\begin{cases}x=\left(-3;3\right)\\y=\left(-2;2\right)\end{cases}}}\)

Vậy...

3 tháng 1 2019

\( (2x+5y+1).(2^{|x|}+y+ x^2 +x)=105\)

Vì 105 là số lẻ nên 2x+5y+1 và 2|x|+y+x2+x cũng là số lẻ.

Có: 2x+5y+1 là số lẻ. Mà 2x+1 là số lẻ

\(\Rightarrow\)5y là số chẵn

\(\Rightarrow\)y là số chắn

Có 2|x|+y+x2+x là só lẻ. Mà x2+x=x(x+1) là tích 2 số tự nhiên liên tiếp nên là số chắn, y cũng là số chẵn

\(\Rightarrow\)2|x| là số lẻ

\(\Rightarrow\)x=0

Thay x=0 vào biểu thức ta có: 

\(\left(2.0+5y+1\right)\left(2^{\left|0\right|}+y+0^2+0\right)=105\)

\(\Leftrightarrow\left(0+5y+1\right)\left(1+y+0\right)=105\)

\(\Leftrightarrow\left(5y+1\right)\left(1+y\right)=105\)

\(\Leftrightarrow5y+5y^2+1+y=105\)

\(\Leftrightarrow5y^2+6y+1=105\)

\(\Leftrightarrow5y^2+6y-104=0\)

\(\Leftrightarrow5y^2-20y+26y-104=0\)

\(\Leftrightarrow5y\left(y-4\right)+26\left(y-4\right)=0\)

\(\Leftrightarrow\left(y-4\right)\left(5y+26\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y-4=0\\5y+26=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=4\\y=\frac{-26}{5}\end{cases}}}\)

Mà \(x;y\in Z\Rightarrow y=4\)

Vậy x=0;y=4(tmyc)