K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

khó quá

30 tháng 12 2018

mình mới họclớp 5 à khó quá

17 tháng 11 2018

Do x, y, z,t là 4 số tự nhiên khác nhau nên có \(x+y+z+t\ge4\)

Giả sử \(x+y+z+t\) là số nguyên tố mà \(x+y+z+t\ge4\) nên \(x+y+z+t\)lẻ.

Vì \(x+y+z+t\) lẻ nên số lượng số lẻ có thể là 1 và 3.

Với 1 số lẻ ,giả sử \(x\)là số lẻ ta có: \(x^2+y^2\ne z^2+t^2\)(Do \(x^2+y^2\)lẻ mà \(z^2+t^2\)chẵn).

Với 3 số lẻ, giả sử \(x,y,z\)là 3 số lẻ, ta có \(x^2+y^2\ne z^2+t^2\)( Do \(x^2+y^2\)chẵn mà \(z^2+t^2\)lẻ)

Do đó với mọi \(x,y,z,t\) tự nhiên khác nhau thì \(x+y+z+t\)không thể là số nguyên tố. Vậy \(x+y+z+t\)là hợp số.

Chúc em học tốt!

9 tháng 10 2019

x:y:z=a:b:c => x=ak ; y=bk ; z=ck (k thuộc R)

Vì a+b+c=a^2+b^2+c^2=1 => (a+b+c)^2=a^2+b^2+c^2=1

=> k^2 . (a+b+c)^2= k ^2 . (a^2+b^2+c^2)

=> (ak+bk+ck)^2 =(ak)^2+(bk)^2+(ck)^2 

=> (x+y+z)^2=x^2+y^2+z^2

9 tháng 10 2019

Dùng tính chất dãy tỉ số bằng nhau 

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)\(\Rightarrow\left(x+y+z\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\Rightarrow DPCM\)