Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, ( x2 + x ) ( x2 + x + 1 )=6
=> ( x2 + x ) ( x2 + x + 1) - 6 = 0
=> ( x - 1 ) ( x + 2 ) ( x2 + x +3 ) = 0
=> x - 1= 0 => x= 1
=> x + 2 = 0 => x = -2
=> x2 + x + 3 = 0 => 12 - 4 ( 1.3 ) = -11 ( vô lí )
Vậy x = 1; x= -2
a) \(2x^3-x^2+3x+6=0\)
\(\left(2x^3-x^2\right)+\left(3x+6\right)=0\)
\(x^2\left(2-x\right)-3\left(2-x\right)=0\)
\(\left(x^2-3\right)\left(2-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-3=0\\2-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{3}\\x=2\end{cases}}\)\(\)
vậy \(\orbr{\begin{cases}x=\sqrt{3}\\x=2\end{cases}}\)
Ta có : 6(x + 1)2 - 2(x + 1)3 + 2(x - 1)(x2 + x + 1) = 1
<=> 6(x2 + 2x + 1) - 2(x3 + 3x + 3 + 1) + 2(x3 - 1) = 1
<=> 6x2 + 12x + 6 - 2x3 - 6x - 6 - 3 + 2x3 - 2 = 1
<=> 6x2 + 6x - 5 = 1
Sorry máy đơ mk giải tiếp nhé : 6x2 + 6x - 5 = 1
<=> 6x2 + 6x - 6 = 0
<=> x2 + x - 1 = 0
<=> x2 + x + \(\frac{1}{4}-\frac{5}{4}=0\)
<=> \(\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=\sqrt{\frac{5}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{5}{4}}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{5}{4}}-\frac{1}{2}\\x=-\frac{1}{2}-\sqrt{\frac{5}{4}}\end{cases}}\)
\(6\left(x+1\right)^2-2\left(x+1\right)^3+2\left(x-1\right)\left(x^2+x+1\right)=1\)
<=>\(2\left[3\left(x+1\right)^2-\left(x+1\right)^3+\left(x-1\right)\left(x^2+x+1\right)\right]=1\)
<=>\(3\left(x+1\right)^2-\left(x+1\right)^3+\left(x-1\right)\left(x^2+x+1\right)=\frac{1}{2}\)
<=>\(\left(x+1\right)^2\left(3-x-1\right)+x^3-1=\frac{1}{2}\)<=>\(\left(x^2+2x+1\right)\left(2-x\right)+x^3=\frac{3}{2}\)
<=>\(-x^3+3x+2+x^3=\frac{3}{2}\)<=>\(3x+2=\frac{3}{2}\Leftrightarrow x=-\frac{1}{6}\)
6(x+1)^2-2(x+1)^3+2(x+1)(x^2+x+1)=1
2(x+1)(6x+6-2x^2-2+x^2+x+1)=1
2(x+1)(7x-x^2+5+x)=1
...
bn tự lm nốt nha mk bận r
\(\left(x^2+x\right)\left(x^2+x+1\right)=6\)
Đặt x^2 + x = t
\(t\left(t+1\right)=6\Leftrightarrow t^2+t=6\)
\(\Leftrightarrow t^2+t-6=0\Leftrightarrow t^2+3t-2t-6=0\)
\(\Leftrightarrow\left(t-2\right)\left(t+3\right)=0\Leftrightarrow t=2;-3\)
Sr tưởng giải PT
\(\left(x^2+x\right)\left(x^2+x+x\right)=6\)
\(\Leftrightarrow x^4+x^3+x^2+x^3+x^2+x=6\)
\(\Leftrightarrow x^4+2x^3+2x^2+x=6\)
\(\Leftrightarrow x^4+2x^3+2x^2+x-6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+3\ne0\right)=0\Leftrightarrow x=1;-2\)