Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
t(t+1)=6
=> t=2;-3
+ x2 +x = 2 => x = 1 ; -2 => S =5
+ x2 + x = -3 => loại
a) =\(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+\frac{25}{4}x^2-\frac{9}{4}x^2\)
\(=\left(x^2-x+1-\frac{5}{2}x\right)^2-\frac{9}{4}x^2\)
\(=\left(x^2+1-2x\right)\left(x^2+1-5\right)\)
câu 1:\(3^{30}=3^{3^{10}}=27^{10};5^{20}=5^{2^{10}}=25^{10}\)do 27>25 nên \(27^{10}>25^{10}\)hay \(3^{30}>5^{20}\)
câu 2: mình tạm chỉnh lại đề tý
\(\hept{\begin{cases}x^2=zy\left(1\right)\\y^2=xz\left(2\right)\\z^2=xy\left(3\right)\end{cases}}\)lấy (1) chia (2) và (2) chia (3) ta được\(\hept{\begin{cases}\frac{x^2}{y^2}=\frac{y}{x}\\\frac{y^2}{z^2}=\frac{z}{y}\end{cases}\Rightarrow\hept{\begin{cases}y^3=x^3\\y^3=z^3\end{cases}}\Rightarrow x^3=y^3=z^3\Rightarrow x=y=z}\)
câu 3:
\(\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)
\(\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)
\(\left(x-2010\right).\left(\frac{1}{2009}+\frac{1}{2008}\right)=\left(x-2010\right).\left(\frac{1}{2007}+\frac{1}{2006}\right)\)
Do đó để 2 vế bằng nhau thì x-2010=0=>x=2010
câu 4: vì x và y là hai đại lượng tỉ lệ nghịch nên ta có Công thức \(x.y=x_1.y_1=x_2.y_2=k\Leftrightarrow2.y_1=3.y_2\Rightarrow y_1=\frac{3}{2}y_2\)
thay \(y_1=\frac{3}{2}y_2\)vào phương trình \(y^2_1+y^2_2=52\)
\(\frac{9}{4}y_2^2+y_2^2=52\Rightarrow\frac{13}{4}y_2^2=52\Rightarrow\hept{\begin{cases}y_2=4\\y_2=-4\end{cases}}\Rightarrow\hept{\begin{cases}y_1=6\\y_1=-6\end{cases}}\)
Rút gọn biểu thức :
a) (x + 1)2 - (x - 1)2 - 3 (x + 1)(x - 1)
b) 5(x + 2)(x -2) - 1/2 (6 - 8x)2 + 17
a, \(\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)
\(=\left(x+1-x+1\right)\left(x+1+x-1\right)-3\left(x^2-1\right)\)
\(=4x-3x^2+3\)
b, \(5\left(x+2\right)\left(x-2\right)-\dfrac{1}{2}\left(6-8x\right)^2+17\)
\(=5\left(x^2-4\right)-\dfrac{1}{2}\left(36-96x+64x^2\right)+17\)
\(=5x^2-20-18+48x-32x^2+17\)
\(=-27x^2+48x-21\)
\(x^2+\dfrac{1}{2}x+\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2\)
Bài 1:
a) \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x+1\right)\left(x-1\right)\)
\(=\left[\left(x+1\right)-\left(x-1\right)\right]\left[\left(x+1\right)^2+\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]-6\left(x^2-1\right)\)
\(=\left(x+1-x+1\right)\left(x^2+2x+1+x^2-1+x^2-2x+1\right)-6x^2+6\)
\(=2\left(3x^2+1\right)-6x^2+6\)
\(=6x^2+2-6x^2+6\)
\(=8\)
=> Biểu thức trên không phụ thuộc vào biến x
b1:
câu a,f áp dụng a2-b2=(a-b)(a+b)
câu b,c áp dụng a3-b3=(a-b)(a2+ab+b2)
câu d: \(x^2+2xy+x+2y=x\left(x+2y\right)+\left(x+2y\right)=\left(x+1\right)\left(x+2y\right)\)
câu e: \(7x^2-7xy-5x+5y=7x\left(x-y\right)-5\left(x-y\right)=\left(7x-5\right)\left(x-y\right)\)
câu g xem lại đề
6(x+1)^2-2(x+1)^3+2(x+1)(x^2+x+1)=1
2(x+1)(6x+6-2x^2-2+x^2+x+1)=1
2(x+1)(7x-x^2+5+x)=1
...
bn tự lm nốt nha mk bận r