K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2020

a) \(\left(x+3\right)^2-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)-2x^2=54\)

=> x2 + 6x + 9 - x(9x2 + 6x + 1) + (2x)3 + 13 - 2x2 = 54

=> x2 + 6x + 9 - 9x3 - 6x2 - x + 8x3 + 1 - 2x2 = 54

=> (-9x3 + 8x3) + (x2 - 6x2 - 2x2) + (6x - x) + (9 + 1) = 54

=> -x3 - 7x2 + 5x + 10 = 54

=> -(x3 + 7x2 - 5x - 10) = 54

=> phương trình vô nghiệm

b) (x + 3)3  - (x - 3)(x2 + 3x + 9) + 6(x + 1)2 + 3x = -33

=> x3 + 9x2 + 27x + 27 - (x3 - 33) + 6(x2 + 2x + 1) + 3x = -33

=> x3 + 9x2 + 27x + 27 - x3 + 27 + 6x2 + 12x + 6 + 3x = -33

=> (x3 - x3) + (9x2 + 6x2) + (27x + 12x + 3x) + (27 + 27 + 6) = -33

=> 15x2 + 42x +  60 = -33

=> 15x2 + 42x + 60 + 33 = 0

=> 15x2 + 42x + 93 = 0

=> 3(5x2 + 14x + 31) = 0

=> 5x2 + 14x + 31 = 0

=> không tìm được x

15 tháng 11 2017

2)

a) \(3x^3-3x=0\)

\(\Leftrightarrow3x\left(x^2-1\right)=0\)

\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Vậy x=0 ; x=-1 ; x=1

b) \(x^2-x+\dfrac{1}{4}=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

15 tháng 11 2017

1)

a) \(\left(x-2\right)\left(x^2+3x+4\right)\)

\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)

\(\Leftrightarrow x^3+x^2-2x-8\)

b) \(\left(x-2\right)\left(x-x^2+4\right)\)

\(=x^2-x^3+4x-2x+2x^2-8\)

\(=3x^2-x^3+2x-8\)

c) \(\left(x^2-1\right)\left(x^2+2x\right)\)

\(=x^4+2x^3-x^2-2x\)

d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)

\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)

\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)

\(=17x^2+5x-6-6x^3\)

22 tháng 9 2019

\(\left(x-3\right)\left(x^2-6x+9-x^2-3x-9\right)+9x^2+12x+39=0\)

\(\Leftrightarrow-9x\left(x-3\right)+9x^2+12x+39=0\)

\(\Leftrightarrow39x+39=0\Rightarrow x=-1\)

Câu a bạn tính ra rồi giải nha

26 tháng 6 2016

\(a.x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)

\(\Leftrightarrow x\left(x^2-5^2\right)-\left(x^3+2^3\right)=3\)

\(\Leftrightarrow x^3-25x-x^3-8=3\)

\(\Leftrightarrow x^3-x^3-25x=8+3\)

\(\Leftrightarrow x=\frac{11}{-25}\)

Vậy x có nghiệm là \(\frac{-11}{25}.\)

\(\)

15 tháng 12 2020

Tương tự mấy phần kia 

\(A=\frac{x+3}{x-2}+\frac{x+2}{3-x}+\frac{x+2}{x^2-5x+6}\)

\(=\frac{x+3}{x-2}-\frac{x+2}{x-3}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{x^2-9-x^2+4+x+2}{\left(x-2\right)\left(x-3\right)}=\frac{-3+x}{\left(x-2\right)\left(x-3\right)}=\frac{-1}{x-2}\)

a: \(\left(x+3\right)^3-x\left(2x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)-3x^2=54\)

\(\Leftrightarrow x^3+9x^2+27x+27+8x^3+1-3x^2-x\left(2x+1\right)^2=54\)

\(\Leftrightarrow9x^3+6x^2+27x+28-4x^3-4x^2-x-54=0\)

\(\Leftrightarrow5x^3+2x^2+26x-26=0\)

\(\Leftrightarrow x\simeq0,835\)

b: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2+3x^2=33\)

\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6x^2+12x+6+3x^2=33\)

\(\Leftrightarrow39x-21=33\)

=>39x=54

hay x=18/13