Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2-25x^2=0\Leftrightarrow-25x^2=-2\Leftrightarrow x^2=\frac{2}{25}\Leftrightarrow x=\frac{\sqrt{2}}{5}\)
b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
a) x3-9x2+27x-27=0
<=>(x-3)3=0
<=>x-3=0
<=>x=3
b) x3-25x=0
<=>x.(x2-25)=0
<=>x.(x-5)(x+5)=0
<=>x=0 hoặc x-5=0 hoặc x+5=0
<=>x=0 hoặc x=5 hoặc x=-5
c)9x2-1=0
<=>(3x-1)(3x+1)=0
<=>3x-1=0 hoặc 3x+1=0
<=>x=1/3 hoặc x=-1/3
a, x^3 - 9x^2 + 27x - 27 = 0
=> ( x - 3)^3 = 0
=> x - 3 = 0
=> x = 3
b, x^3 - 25x = 0
=> x(x^2 - 25) = 0
=> x(x-5)(x + 5) = 0
=> x =0 hoặc x - 5 = 0 hoặc x + 5 = 0
=> x= 0 hoặc x =5 hoặc x = -5
c, 9x^2 - 1 = 0
=> (3x)^2 - 1^2 = 0
=> ( 3x- 1)(3x+ 1) = 0
=> 3x - 1 = 0 hoặc 3x + 1 = 0
=> x = 1/3 hoặc x = -1/3
a) \(25x^2-2=0\)
\(=>\left(5x\right)^2-\left(\sqrt{2}\right)^2=0\)
\(=>\left(5x-\sqrt{2}\right)\left(5x+\sqrt{2}\right)=0\)
\(=>\hept{\begin{cases}5x-\sqrt{2}=0\\5x+\sqrt{2}=0\end{cases}}\)
\(=>\hept{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=-\frac{\sqrt{2}}{5}\end{cases}}\)
b) \(10x-x^2-25=0\)
\(=>-x^2-5x-5x-25=0\)
\(=>-x\left(x+5\right)-5\left(x+5\right)=0\)
\(=>\left(x+5\right)\left(-x-5\right)=0\)
\(=>\hept{\begin{cases}x+5=0\\-x-5=0\end{cases}}\)
\(=>\hept{\begin{cases}x=-5\\x=-5\end{cases}}\)
a) \(2-25x^2=0\)
\(25x^2=2\)
\(x^2=\frac{2}{25}\)
\(\Rightarrow\orbr{\begin{cases}x=\sqrt{\frac{2}{25}}\\x=-\sqrt{\frac{2}{25}}\end{cases}}\)
Vậy \(x=\sqrt{\frac{2}{25}}\)hoặc \(x=-\sqrt{\frac{2}{25}}\)
b) \(x^2-x+\frac{1}{4}=0\)
\(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\)
\(\left(x-\frac{1}{2}\right)^2=0\)
\(\Rightarrow x-\frac{1}{2}=0\)
\(x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
a) \(x^4-10x^3+25x^2=0\)
\(\Leftrightarrow x^2\left(x^2-10x+25\right)=0\)
\(\Leftrightarrow x^2\left(x-5\right)^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2=0\\\left(x-5\right)^2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b) \(x^3+3x^2+3x+1=0\)
\(\Leftrightarrow\left(x+1\right)^3=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
a) x4 - 10x3 + 25x2 = (x2)2 - 2.x2.5x + (5x)2 = (x2 - 5x)2 = 0 => x(x - 5) = 0 => x = 0 hay x - 5 = 0 => x = 0 ; 5
b) x3 + 3x2 + 3x + 1 = x3 + 3.x2.1 + 3.x.12 + 13 = (x + 1)3 = 0 => x + 1 = 0 => x = -1
a,x^2(x^2-10x+25)=0
x^2(x-5)^2=0
=> x^2=0 hoac (x-5)^2=0
=>x=0 hoac 5
a: \(6x^4+25x^3+12x^2-25x+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+18x^2-5x^2-15x+x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(6x^2-5x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(3x-1\right)\left(2x-1\right)=0\)
hay \(x\in\left\{-2;-3;\dfrac{1}{3};\dfrac{1}{2}\right\}\)
b: \(x^5+2x^4+3x^3+3x^2+2x+1=0\)
\(\Leftrightarrow x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+2x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4+x^2+x^3+x+x^2+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2+1\right)=0\)
=>x+1=0
hay x=-1
c: \(x^2\left(x^2+2\right)-x^2-2=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\)
=>x=1 hoặc x=-1
a/ 25x2-2=0
= \(25x^2=2\)
= \(\frac{5x-\sqrt{2}}{5}=0\)
= \(5x=\sqrt{2}\)
= \(\frac{5x+\sqrt{2}}{5}=0\)
= \(5x=-\sqrt{2}\)
=> x = \(+-\frac{\sqrt{2}}{5}\)
a/ 25x2 - 2 = 0
=> 25x2 = 2
=> x2 = \(\frac{2}{25}\)
=> x = \(\sqrt{\frac{2}{25}}\)
b/ (x + 2)(x2 - 2x + 4) + x(5 - x)(x + 5) = -17
=> (x3 - 2x2 + 4x + 2x2 - 4x + 8) + x(52 - x2) = -17
=> x3 + (-2x2 + 2x2) + ( -4x + 4x) + 8 - x3 + 25x = -17
=> (x3 - x3) + 25x + 8 = -17
=> 25x = -17 - 8
=> 25x = -25
=> x = -1
\(x^2-25x=0\)
\(x\cdot\left(x-25\right)=0\)
\(\orbr{\begin{cases}x=0\\x-25=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=25\end{cases}}}\)
trong x phải có một số hạng là 0 thì kết quả đó bằng ko