Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4-10x^3+25x^2=0\)
\(\Leftrightarrow x^2\left(x^2-10x+25\right)=0\)
\(\Leftrightarrow x^2\left(x-5\right)^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2=0\\\left(x-5\right)^2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b) \(x^3+3x^2+3x+1=0\)
\(\Leftrightarrow\left(x+1\right)^3=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
a) \(\left(x^2-1\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x^2-25=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=1\\x^2=25\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x=\pm5\end{cases}}\)
b) \(x^2-8x+16=0\)
\(\Leftrightarrow\left(x-4\right)^2=0\)
\(\Leftrightarrow x-4=0\)
\(\Leftrightarrow x=4\)
c) \(x^3+3x^2+3x+1=0\)
\(\Leftrightarrow\left(x+1\right)^3=0\)
\(\Leftrightarrow x+1=0\)
\(\Rightarrow x=-1\)
d) \(x^3+10x^2+25x=0\)
\(\Leftrightarrow x\left(x+5\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
a) ( x2 - 1 )( x2 - 25 ) = 0
<=> \(\orbr{\begin{cases}x^2-1=0\\x^2-25=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x=\pm5\end{cases}}\)
b) x2 - 8x + 16 = 0
<=> ( x - 4 )2 = 0
<=> x - 4 = 0
<=> x = 4
c) x3 + 3x2 + 3x + 1 = 0
<=> ( x + 1 )3 = 0
<=> x + 1 = 0
<=> x = -1
d) x3 + 10x2 + 25x = 0
<=> x( x2 + 10x + 25 ) = 0
<=> x( x + 5 )2 = 0
<=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
a: \(6x^4+25x^3+12x^2-25x+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+18x^2-5x^2-15x+x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(6x^2-5x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(3x-1\right)\left(2x-1\right)=0\)
hay \(x\in\left\{-2;-3;\dfrac{1}{3};\dfrac{1}{2}\right\}\)
b: \(x^5+2x^4+3x^3+3x^2+2x+1=0\)
\(\Leftrightarrow x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+2x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4+x^2+x^3+x+x^2+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2+1\right)=0\)
=>x+1=0
hay x=-1
c: \(x^2\left(x^2+2\right)-x^2-2=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\)
=>x=1 hoặc x=-1
\(1.6x\left(x-10\right)-2x+20=0\)
⇔\(6x\left(x-10\right)-2\left(x-10\right)=0\)
⇔ \(2\left(x-10\right)\left(3x-1\right)=0\)
⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)
KL....
\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)
⇔ \(3\left(x-3\right)\left(x^2-1\right)=0\)
⇔ \(x=+-1\) hoặc \(x=3\)
KL....
\(3.x^2-8x+16=2\left(x-4\right)\)
⇔ \(\left(x-4\right)^2-2\left(x-4\right)=0\)
⇔ \(\left(x-4\right)\left(x-6\right)=0\)
⇔ \(x=4\) hoặc \(x=6\)
KL.....
\(4.x^2-16+7x\left(x+4\right)=0\)
\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)
⇔ \(x=-4hoacx=\dfrac{1}{2}\)
KL.....
\(5.x^2-13x-14=0\)
⇔ \(x^2+x-14x-14=0\)
\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)
\(\text{⇔}x=14hoacx=-1\)
KL......
Còn lại tương tự ( dài quá ~ )
a, sửa đề : \(25x^2+4y^2-10x+12y+10=0\)
\(\Leftrightarrow25x^2-10x+1+4y^2+12y+9=0\)
\(\Leftrightarrow\left(5x-1\right)^2+\left(2y+3\right)^2=0\)
Đẳng thức xảy ra khi x = 1/5 ; y = -3/2
b, \(3x^2+2y^2-12x+12y+30=0\)
\(\Leftrightarrow3\left(x^2-4x+4\right)+2\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)
Đẳng thức xảy ra khi x = 2 ; y = -3
\(a)\)
\(25x^2+4y^2-10x+12x+10=0\)
\(\Leftrightarrow\left(5x\right)^2-10x+1+\left(2y\right)^2+12y+9=0\)
\(\Leftrightarrow[\left(5x\right)^2-10x+1+\left(2y\right)^2+12y+9=0\)
\(\Leftrightarrow[\left(5x\right)^2-2.5x.1-1^2]+[\left(2y\right)^2+2.2y.3+3^{20}]=0\)
\(\Leftrightarrow\left(5x-1\right)^2+\left(2y+3\right)^2=0\)
\(\Leftrightarrow\left(5x-1\right)^2=0\Leftrightarrow5x-1=0\Leftrightarrow x=\frac{1}{5}\)
\(\Leftrightarrow\left(2y+3\right)^2=0\Leftrightarrow2y+3=0\Leftrightarrow2y=-3\Leftrightarrow y=\frac{-3}{2}\)
\(b)\)
\(3x^2+2y^2-12x+12y+30=0\)
\(\Leftrightarrow3x^2-12x+12+2y^2+12y+18=0\)
\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)
Mà: \(3\left(x-2\right)^2\ge0\forall x;2\left(y+3\right)^2\ge0\forall y\)
\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)chỉ khi: \(x-2=y+3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\y=-3\end{cases}}\)
a) Gần giống cho nó giống luôn.
cần thêm (-x^3+2x^2-x) là giống
\(\left(x-1\right)^4+x^3-2x^2+x=\left(x-1\right)^4+x\left(x^2-2x+1\right)=\left(x-1\right)^4+x\left(x-1\right)^2\)
\(\left(x-1\right)^2\left[\left(x-1\right)^2+x\right]\)
\(\left[\begin{matrix}x-1=0\Rightarrow x=0\\\left(x-1\right)^2+x=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\end{matrix}\right.\)
Nghiệm duy nhất: x=1
a) x4 - 10x3 + 25x2 = (x2)2 - 2.x2.5x + (5x)2 = (x2 - 5x)2 = 0 => x(x - 5) = 0 => x = 0 hay x - 5 = 0 => x = 0 ; 5
b) x3 + 3x2 + 3x + 1 = x3 + 3.x2.1 + 3.x.12 + 13 = (x + 1)3 = 0 => x + 1 = 0 => x = -1
a,x^2(x^2-10x+25)=0
x^2(x-5)^2=0
=> x^2=0 hoac (x-5)^2=0
=>x=0 hoac 5