Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>0,2-x=7
=>x=-6,8
b: =>x=6 hoặc x=-6
c: =>x^2=5
hay \(x=\pm\sqrt{5}\)
d: =>x^2=2
hay \(x=\pm\sqrt{2}\)
e: =>x-1=2 hoặc x-1=-2
=>x=-1 hoặc x=3
f: =>2x+1=7 hoặc 2x+1=-7
=>2x=-8 hoặc 2x=6
=>x=3 hoặc x=-4
a) Ta có: \(x^4=64\)
\(\Leftrightarrow\) \(x^2=\sqrt{64}=8\)
\(\Leftrightarrow\) \(x=2\sqrt{2}\)
\(\Leftrightarrow\) \(x\approx2.83\)
b) Ta có: \(x-\sqrt{x}=0\) (ĐKXĐ: \(x\ge0\) )
\(\Leftrightarrow\) \(\left(\sqrt{x}\right)^2-\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\) \(\sqrt{x}=0\) hoặc \(\sqrt{x}-1=0\)
\(\Leftrightarrow\) \(x=0\) \(\Leftrightarrow\) \(\sqrt{x}=1\)
(thỏa mãn ĐKXĐ) \(\Leftrightarrow\) \(x=1\) (thỏa mãn ĐKXĐ)
c) Ta có: \(2x-3\sqrt{x}=0\) (ĐKXĐ: \(x\ge0\) )
\(\Leftrightarrow\) \(2\left(\sqrt{x}\right)^2-3\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(2\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\) \(\sqrt{x}=0\) hoặc \(2\sqrt{x}-3=0\)
\(\Leftrightarrow\) \(x=0\) \(\Leftrightarrow\) \(2\sqrt{x}=3\)
(thỏa mãn ĐKXĐ) \(\Leftrightarrow\) \(\sqrt{x}=\dfrac{3}{2}=1.5\) (thỏa mãn ĐKXĐ)
NOTE: A giải theo cách của lớp 9 nên có cái j ko hiểu cứ nói a. E mà làm theo cách của a là bị nói là sai đó.
Bài 1:\(3^{x+2}-3^x=24\Rightarrow3^x.3^2-3^x=24\Rightarrow3^x.\left(3^2-1\right)=24\Rightarrow3^x.8=24\Rightarrow3^x=3\Rightarrow x=1\)
Bài 2:a,Chọn đáp án C.x0=1
b,Chọn đáp án D\(-\sqrt{2}+\sqrt{5}\) vì \(\sqrt{5}>\sqrt{2}\Rightarrow\left|\sqrt{2}-\sqrt{5}\right|=-\left(\sqrt{2}-\sqrt{5}\right)\)
\(d,x-5\sqrt{x}=0\)
\(ĐKXĐ:x\ge0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=25\end{cases}}\)(Thỏa mãn ĐKXĐ)
Vậy...
Bài 1:
a) \(2\left(x-\sqrt{12}\right)^2=6\Rightarrow\left(x-\sqrt{12}\right)^2=3\)
TH1l \(x-\sqrt{12}=\sqrt{3}\Rightarrow x=\sqrt{3}+\sqrt{12}=3\sqrt{3}\)
TH2: \(x-\sqrt{12}=-\sqrt{3}\Rightarrow x=-\sqrt{3}+\sqrt{12}=\sqrt{3}\)
b) \(2x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\2\sqrt{x}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}\)
c) \(|2x+\sqrt{\frac{9}{16}}|-x=\left(\frac{1}{\sqrt{2}}\right)^2\Leftrightarrow\left|2x+\frac{3}{4}\right|-x=\frac{1}{2}\)
TH1: \(2x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{8}\)
Ta có \(2x+\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow x=-\frac{1}{4}\left(tm\right)\)
TH2: \(x< -\frac{3}{8}\)
Ta có \(-2x-\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow-3x=\frac{5}{4}\Leftrightarrow x=-\frac{5}{12}\left(tm\right)\)
Bài 2: Để \(A=\frac{2\sqrt{x}+3}{\sqrt{x}-2}\) là số nguyên thì \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\)
Ta có \(\frac{2\left(\sqrt{x}-2\right)+7}{\sqrt{x}-2}=2+\frac{7}{\sqrt{x}-2}\)
Để \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\) thì \(\frac{7}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2\inƯ\left(7\right)\)
Do \(\sqrt{x}-2\ge-2\Rightarrow\sqrt{x}-2\in\left\{-1;1;7\right\}\)
\(\Rightarrow x\in\left\{1;9;81\right\}\)
Bài 16:
a: \(x=2\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
=>x=0 hoặc x=4
b: \(\Leftrightarrow\left(x-1\right)^2=\dfrac{9}{16}\)
=>x-1=3/4 hoặc x-1=-3/4
=>x=7/4 hoặc x=1/4
a: \(x-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
=>x=0 hoặc x=4
b: \(2x=\sqrt{x}\)
\(\Leftrightarrow2x-\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\)
=>x=0 hoặc x=1/4
c: \(x-3\sqrt{x}+2=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
=>x=1 hoặc x=4
d:
ĐKXĐ: x>=1
\(\Leftrightarrow\sqrt{x-1}\left(x+2\right)=0\)
=>x-1=0 hoặc x+2=0
=>x=1(nhận) hoặc x=-2(loại)
a) \(7-\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}=7\)
\(\Rightarrow x=\left(\sqrt{7}\right)^2\)
b) \(5\sqrt{x}+1=40\)
\(\Rightarrow5\sqrt{x}=39\)
\(\Rightarrow\sqrt{x}=7,8\)
\(\Rightarrow x=\left(\sqrt{7,8}\right)^2\)
c) \(\dfrac{5}{12}\sqrt{x}-\dfrac{1}{6}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{5}{12}\sqrt{x}=\dfrac{1}{2}\)
\(\Rightarrow\sqrt{x}=1,2\)
\(\Rightarrow x=\left(\sqrt{1,2}\right)^2\)
d) \(4x^2-1=0\)
\(\Rightarrow\left(2x-1\right)\left(2x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=0\Rightarrow x=0,5\\2x+1=0\Rightarrow x=-0,5\end{matrix}\right.\)
e) \(\sqrt{x+1}-2=0\)
\(\Rightarrow\sqrt{x+1}=2\)
\(\Rightarrow x+1=1,414\)
\(\Rightarrow x=0,414\)
f) \(2x^2+0,82=1\)
\(\Rightarrow2x^2=0,18\)
\(\Rightarrow x^2=0,09\)
\(\Rightarrow x=\pm0,3\)
g) Không có kết quả
a) \(2\sqrt{x}-10=20\left(ĐKXD:x\ge0\right)\)
\(\Leftrightarrow2\sqrt{x}=30\Leftrightarrow\sqrt{x}=15\)
\(\Leftrightarrow x=225\)
b) \(2x-\sqrt{x}=0\left(ĐKXĐ:x\ge0\right)\)
\(\Leftrightarrow2x=\sqrt{x}\Leftrightarrow4x^2=x\Leftrightarrow4x^2-x=0\Leftrightarrow x\left(4x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}}\)
Vậy ....
c) \(x+3\sqrt{x}=0\left(ĐKXĐ:x\ge0\right)\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}}\)
Vậy x = 0
d) \(\left(x-1\right)\left(x^2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x\in\varnothing\end{cases}}}\)
Vậy x = 1
a.\(2\sqrt{x}=20+10\)
\(2\sqrt{x}=30\)
\(\sqrt{x}=30:2\)
\(\sqrt{x}=15\)
\(x=15^2\)
x=225