\(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 16:

a: \(x=2\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

=>x=0 hoặc x=4

b: \(\Leftrightarrow\left(x-1\right)^2=\dfrac{9}{16}\)

=>x-1=3/4 hoặc x-1=-3/4

=>x=7/4 hoặc x=1/4

28 tháng 2 2018

Ta có: \(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)

Tương tự: \(\left(\sqrt{a+b}\right)^2=a+b\)

Nhận thấy: \(\left(\sqrt{a}+\sqrt{b}\right)^2>\left(\sqrt{a+b}\right)^2\)

Suy ra: \(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)

28 tháng 2 2018

nhầm chỗ \(\sqrt{b}b\) chuyển thành \(\sqrt{b}\)

14 tháng 7 2016

Bài 1 :

a. \(\left|x-\frac{1}{3}\right|< \frac{5}{2}\)

TH1 : nếu \(\left|x-\frac{1}{3}\right|>0\)

\(x-\frac{1}{3}< \frac{5}{3}\)

\(x< 2\)

TH2 : nếu \(\left|x-\frac{1}{3}\right|< 0\)

\(\frac{1}{3}-x< \frac{5}{3}\)

\(x>-\frac{4}{3}\)

14 tháng 7 2016

Bài 2 :

a. \(\left(x-2\right)^2=1\)

\(\left(x-2\right)^2-1=0\)

\(\left(x-2-1\right)\left(x-2+1\right)=0\)

\(\left(x-3\right)\left(x-1\right)=0\)

\(\left[\begin{array}{nghiempt}x-3=0\\x-1=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=3\\x=1\end{array}\right.\)

23 tháng 10 2017

Bài 1:

a) \(2\left(x-\sqrt{12}\right)^2=6\Rightarrow\left(x-\sqrt{12}\right)^2=3\)

TH1l \(x-\sqrt{12}=\sqrt{3}\Rightarrow x=\sqrt{3}+\sqrt{12}=3\sqrt{3}\)

TH2: \(x-\sqrt{12}=-\sqrt{3}\Rightarrow x=-\sqrt{3}+\sqrt{12}=\sqrt{3}\)

b)  \(2x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\2\sqrt{x}-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}\)

c) \(|2x+\sqrt{\frac{9}{16}}|-x=\left(\frac{1}{\sqrt{2}}\right)^2\Leftrightarrow\left|2x+\frac{3}{4}\right|-x=\frac{1}{2}\)

TH1: \(2x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{8}\)

Ta có \(2x+\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow x=-\frac{1}{4}\left(tm\right)\)

TH2: \(x< -\frac{3}{8}\)

Ta có \(-2x-\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow-3x=\frac{5}{4}\Leftrightarrow x=-\frac{5}{12}\left(tm\right)\)

Bài 2:  Để \(A=\frac{2\sqrt{x}+3}{\sqrt{x}-2}\) là số nguyên thì \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\)

Ta có \(\frac{2\left(\sqrt{x}-2\right)+7}{\sqrt{x}-2}=2+\frac{7}{\sqrt{x}-2}\)

Để \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\) thì \(\frac{7}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2\inƯ\left(7\right)\)

Do \(\sqrt{x}-2\ge-2\Rightarrow\sqrt{x}-2\in\left\{-1;1;7\right\}\)

\(\Rightarrow x\in\left\{1;9;81\right\}\)

22 tháng 10 2017

 Bài 1 :

\(2\left(x-\sqrt{12}\right)^2=6\)

\(\Rightarrow\left(x-\sqrt{12}\right)^2=6:2=3\)

\(\Rightarrow x-\sqrt{12}=\sqrt{3}\)

\(\Rightarrow x=3\sqrt{3}\)

14 tháng 7 2018

a) \(2\sqrt{x}-10=20\left(ĐKXD:x\ge0\right)\)

\(\Leftrightarrow2\sqrt{x}=30\Leftrightarrow\sqrt{x}=15\)

\(\Leftrightarrow x=225\)

b) \(2x-\sqrt{x}=0\left(ĐKXĐ:x\ge0\right)\)

\(\Leftrightarrow2x=\sqrt{x}\Leftrightarrow4x^2=x\Leftrightarrow4x^2-x=0\Leftrightarrow x\left(4x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}}\)

Vậy ....

c) \(x+3\sqrt{x}=0\left(ĐKXĐ:x\ge0\right)\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}}\)

Vậy x = 0

d) \(\left(x-1\right)\left(x^2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x\in\varnothing\end{cases}}}\)

Vậy x = 1

14 tháng 7 2018

a.\(2\sqrt{x}=20+10\)

\(2\sqrt{x}=30\)

\(\sqrt{x}=30:2\)

\(\sqrt{x}=15\)

\(x=15^2\)

x=225

5 tháng 12 2017

Bài 1:\(3^{x+2}-3^x=24\Rightarrow3^x.3^2-3^x=24\Rightarrow3^x.\left(3^2-1\right)=24\Rightarrow3^x.8=24\Rightarrow3^x=3\Rightarrow x=1\)

Bài 2:a,Chọn đáp án C.x0=1

b,Chọn đáp án D\(-\sqrt{2}+\sqrt{5}\) vì \(\sqrt{5}>\sqrt{2}\Rightarrow\left|\sqrt{2}-\sqrt{5}\right|=-\left(\sqrt{2}-\sqrt{5}\right)\)

15 tháng 10 2017

a) \(x^2-2=0\)

\(x^2=2\)

\(\Rightarrow x=\sqrt{2}\)

vậy \(x=\sqrt{2}\)

b) \(\sqrt{x}\left(x^2-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\x^2-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

         vậy \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

15 tháng 10 2017

a)\(x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)

b)\(\sqrt{x}\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\x^2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\\x=-1\end{cases}}}\)

Bài 1: 

a: \(\left(2x-1\right)^4=16\)

=>2x-1=2 hoặc 2x-1=-2

=>2x=3 hoặc 2x=-1

=>x=3/2 hoặc x=-1/2

b: \(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}< =0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x+7=y=2\cdot3+7=13\end{matrix}\right.\)

c: \(10800=2^4\cdot3^3\cdot5^2\)

mà \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)

nên \(\left\{{}\begin{matrix}x+2=4\\x+1=3\\x=2\end{matrix}\right.\Leftrightarrow x=2\)

 

21 tháng 11 2019

BÀi 2:

Cả 4 câu áp dụng tính chất này: \(\sqrt{a^2}=a\)

a)\(\sqrt{\frac{3^2}{7^2}}=\frac{3}{7}\)

b)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{92^2}}=\frac{3+39}{7+92}=\frac{42}{99}=\frac{14}{33}\)

c)\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\frac{3-39}{7-91}=\frac{-36}{-84}=\frac{3}{7}\)

d)\(\sqrt{\frac{39^2}{91^2}}=\frac{39}{91}=\frac{3}{7}\)

21 tháng 11 2019

b)Vì BCNN(3;5) = 15

\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.5}=\frac{y}{3.5}=\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{5.3}=\frac{z}{7.3}=\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)

Vậy...

c)Vì BCNN(2;3;5) = 30

\(\Rightarrow2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

WTFFFFFF>>>

d)dễ... áp dụng tính chất DTBN là ra 1/2 rồi tính

e)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(x=\frac{y}{2}=\frac{z}{4}=\frac{4x}{4}=\frac{3y}{6}=\frac{2x}{8}=\frac{4x-3y+2x}{4-6+8}=\frac{36}{6}=6\)

\(\Rightarrow\left\{{}\begin{matrix}x=6.1=6\\y=6.2=12\\z=6.4=24\end{matrix}\right.\)

Vậy...

20 tháng 11 2017

a) Ta có: \(x^4=64\)

\(\Leftrightarrow\) \(x^2=\sqrt{64}=8\)

\(\Leftrightarrow\) \(x=2\sqrt{2}\)

\(\Leftrightarrow\) \(x\approx2.83\)

b) Ta có: \(x-\sqrt{x}=0\) (ĐKXĐ: \(x\ge0\) )

\(\Leftrightarrow\) \(\left(\sqrt{x}\right)^2-\sqrt{x}=0\)

\(\Leftrightarrow\) \(\sqrt{x}\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\) \(\sqrt{x}=0\) hoặc \(\sqrt{x}-1=0\)

\(\Leftrightarrow\) \(x=0\) \(\Leftrightarrow\) \(\sqrt{x}=1\)

(thỏa mãn ĐKXĐ) \(\Leftrightarrow\) \(x=1\) (thỏa mãn ĐKXĐ)

c) Ta có: \(2x-3\sqrt{x}=0\) (ĐKXĐ: \(x\ge0\) )

\(\Leftrightarrow\) \(2\left(\sqrt{x}\right)^2-3\sqrt{x}=0\)

\(\Leftrightarrow\) \(\sqrt{x}\left(2\sqrt{x}-3\right)=0\)

\(\Leftrightarrow\) \(\sqrt{x}=0\) hoặc \(2\sqrt{x}-3=0\)

\(\Leftrightarrow\) \(x=0\) \(\Leftrightarrow\) \(2\sqrt{x}=3\)

(thỏa mãn ĐKXĐ) \(\Leftrightarrow\) \(\sqrt{x}=\dfrac{3}{2}=1.5\) (thỏa mãn ĐKXĐ)

NOTE: A giải theo cách của lớp 9 nên có cái j ko hiểu cứ nói a. E mà làm theo cách của a là bị nói là sai đó.

21 tháng 11 2017

Thank you everyone !!! ^_^ ^_^ ^_^