Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)
Tương tự: \(\left(\sqrt{a+b}\right)^2=a+b\)
Nhận thấy: \(\left(\sqrt{a}+\sqrt{b}\right)^2>\left(\sqrt{a+b}\right)^2\)
Suy ra: \(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)
Bài 1 :
a. \(\left|x-\frac{1}{3}\right|< \frac{5}{2}\)
TH1 : nếu \(\left|x-\frac{1}{3}\right|>0\)
\(x-\frac{1}{3}< \frac{5}{3}\)
\(x< 2\)
TH2 : nếu \(\left|x-\frac{1}{3}\right|< 0\)
\(\frac{1}{3}-x< \frac{5}{3}\)
\(x>-\frac{4}{3}\)
Bài 2 :
a. \(\left(x-2\right)^2=1\)
\(\left(x-2\right)^2-1=0\)
\(\left(x-2-1\right)\left(x-2+1\right)=0\)
\(\left(x-3\right)\left(x-1\right)=0\)
\(\left[\begin{array}{nghiempt}x-3=0\\x-1=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=3\\x=1\end{array}\right.\)
Bài 1:
a) \(2\left(x-\sqrt{12}\right)^2=6\Rightarrow\left(x-\sqrt{12}\right)^2=3\)
TH1l \(x-\sqrt{12}=\sqrt{3}\Rightarrow x=\sqrt{3}+\sqrt{12}=3\sqrt{3}\)
TH2: \(x-\sqrt{12}=-\sqrt{3}\Rightarrow x=-\sqrt{3}+\sqrt{12}=\sqrt{3}\)
b) \(2x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\2\sqrt{x}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}\)
c) \(|2x+\sqrt{\frac{9}{16}}|-x=\left(\frac{1}{\sqrt{2}}\right)^2\Leftrightarrow\left|2x+\frac{3}{4}\right|-x=\frac{1}{2}\)
TH1: \(2x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{8}\)
Ta có \(2x+\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow x=-\frac{1}{4}\left(tm\right)\)
TH2: \(x< -\frac{3}{8}\)
Ta có \(-2x-\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow-3x=\frac{5}{4}\Leftrightarrow x=-\frac{5}{12}\left(tm\right)\)
Bài 2: Để \(A=\frac{2\sqrt{x}+3}{\sqrt{x}-2}\) là số nguyên thì \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\)
Ta có \(\frac{2\left(\sqrt{x}-2\right)+7}{\sqrt{x}-2}=2+\frac{7}{\sqrt{x}-2}\)
Để \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\) thì \(\frac{7}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2\inƯ\left(7\right)\)
Do \(\sqrt{x}-2\ge-2\Rightarrow\sqrt{x}-2\in\left\{-1;1;7\right\}\)
\(\Rightarrow x\in\left\{1;9;81\right\}\)
a) \(2\sqrt{x}-10=20\left(ĐKXD:x\ge0\right)\)
\(\Leftrightarrow2\sqrt{x}=30\Leftrightarrow\sqrt{x}=15\)
\(\Leftrightarrow x=225\)
b) \(2x-\sqrt{x}=0\left(ĐKXĐ:x\ge0\right)\)
\(\Leftrightarrow2x=\sqrt{x}\Leftrightarrow4x^2=x\Leftrightarrow4x^2-x=0\Leftrightarrow x\left(4x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}}\)
Vậy ....
c) \(x+3\sqrt{x}=0\left(ĐKXĐ:x\ge0\right)\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}}\)
Vậy x = 0
d) \(\left(x-1\right)\left(x^2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x\in\varnothing\end{cases}}}\)
Vậy x = 1
Bài 1:\(3^{x+2}-3^x=24\Rightarrow3^x.3^2-3^x=24\Rightarrow3^x.\left(3^2-1\right)=24\Rightarrow3^x.8=24\Rightarrow3^x=3\Rightarrow x=1\)
Bài 2:a,Chọn đáp án C.x0=1
b,Chọn đáp án D\(-\sqrt{2}+\sqrt{5}\) vì \(\sqrt{5}>\sqrt{2}\Rightarrow\left|\sqrt{2}-\sqrt{5}\right|=-\left(\sqrt{2}-\sqrt{5}\right)\)
a) \(x^2-2=0\)
\(x^2=2\)
\(\Rightarrow x=\sqrt{2}\)
vậy \(x=\sqrt{2}\)
b) \(\sqrt{x}\left(x^2-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\x^2-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
vậy \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
a)\(x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
b)\(\sqrt{x}\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\x^2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\\x=-1\end{cases}}}\)
Bài 1:
a: \(\left(2x-1\right)^4=16\)
=>2x-1=2 hoặc 2x-1=-2
=>2x=3 hoặc 2x=-1
=>x=3/2 hoặc x=-1/2
b: \(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}< =0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x+7=y=2\cdot3+7=13\end{matrix}\right.\)
c: \(10800=2^4\cdot3^3\cdot5^2\)
mà \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)
nên \(\left\{{}\begin{matrix}x+2=4\\x+1=3\\x=2\end{matrix}\right.\Leftrightarrow x=2\)
BÀi 2:
Cả 4 câu áp dụng tính chất này: \(\sqrt{a^2}=a\)
a)\(\sqrt{\frac{3^2}{7^2}}=\frac{3}{7}\)
b)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{92^2}}=\frac{3+39}{7+92}=\frac{42}{99}=\frac{14}{33}\)
c)\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\frac{3-39}{7-91}=\frac{-36}{-84}=\frac{3}{7}\)
d)\(\sqrt{\frac{39^2}{91^2}}=\frac{39}{91}=\frac{3}{7}\)
b)Vì BCNN(3;5) = 15
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.5}=\frac{y}{3.5}=\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{5.3}=\frac{z}{7.3}=\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)
Vậy...
c)Vì BCNN(2;3;5) = 30
\(\Rightarrow2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
WTFFFFFF>>>
d)dễ... áp dụng tính chất DTBN là ra 1/2 rồi tính
e)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(x=\frac{y}{2}=\frac{z}{4}=\frac{4x}{4}=\frac{3y}{6}=\frac{2x}{8}=\frac{4x-3y+2x}{4-6+8}=\frac{36}{6}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.1=6\\y=6.2=12\\z=6.4=24\end{matrix}\right.\)
Vậy...
a) Ta có: \(x^4=64\)
\(\Leftrightarrow\) \(x^2=\sqrt{64}=8\)
\(\Leftrightarrow\) \(x=2\sqrt{2}\)
\(\Leftrightarrow\) \(x\approx2.83\)
b) Ta có: \(x-\sqrt{x}=0\) (ĐKXĐ: \(x\ge0\) )
\(\Leftrightarrow\) \(\left(\sqrt{x}\right)^2-\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\) \(\sqrt{x}=0\) hoặc \(\sqrt{x}-1=0\)
\(\Leftrightarrow\) \(x=0\) \(\Leftrightarrow\) \(\sqrt{x}=1\)
(thỏa mãn ĐKXĐ) \(\Leftrightarrow\) \(x=1\) (thỏa mãn ĐKXĐ)
c) Ta có: \(2x-3\sqrt{x}=0\) (ĐKXĐ: \(x\ge0\) )
\(\Leftrightarrow\) \(2\left(\sqrt{x}\right)^2-3\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(2\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\) \(\sqrt{x}=0\) hoặc \(2\sqrt{x}-3=0\)
\(\Leftrightarrow\) \(x=0\) \(\Leftrightarrow\) \(2\sqrt{x}=3\)
(thỏa mãn ĐKXĐ) \(\Leftrightarrow\) \(\sqrt{x}=\dfrac{3}{2}=1.5\) (thỏa mãn ĐKXĐ)
NOTE: A giải theo cách của lớp 9 nên có cái j ko hiểu cứ nói a. E mà làm theo cách của a là bị nói là sai đó.
Bài 16:
a: \(x=2\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
=>x=0 hoặc x=4
b: \(\Leftrightarrow\left(x-1\right)^2=\dfrac{9}{16}\)
=>x-1=3/4 hoặc x-1=-3/4
=>x=7/4 hoặc x=1/4