Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(2\left(x-\sqrt{12}\right)^2=6\Rightarrow\left(x-\sqrt{12}\right)^2=3\)
TH1l \(x-\sqrt{12}=\sqrt{3}\Rightarrow x=\sqrt{3}+\sqrt{12}=3\sqrt{3}\)
TH2: \(x-\sqrt{12}=-\sqrt{3}\Rightarrow x=-\sqrt{3}+\sqrt{12}=\sqrt{3}\)
b) \(2x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\2\sqrt{x}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}\)
c) \(|2x+\sqrt{\frac{9}{16}}|-x=\left(\frac{1}{\sqrt{2}}\right)^2\Leftrightarrow\left|2x+\frac{3}{4}\right|-x=\frac{1}{2}\)
TH1: \(2x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{8}\)
Ta có \(2x+\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow x=-\frac{1}{4}\left(tm\right)\)
TH2: \(x< -\frac{3}{8}\)
Ta có \(-2x-\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow-3x=\frac{5}{4}\Leftrightarrow x=-\frac{5}{12}\left(tm\right)\)
Bài 2: Để \(A=\frac{2\sqrt{x}+3}{\sqrt{x}-2}\) là số nguyên thì \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\)
Ta có \(\frac{2\left(\sqrt{x}-2\right)+7}{\sqrt{x}-2}=2+\frac{7}{\sqrt{x}-2}\)
Để \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\) thì \(\frac{7}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2\inƯ\left(7\right)\)
Do \(\sqrt{x}-2\ge-2\Rightarrow\sqrt{x}-2\in\left\{-1;1;7\right\}\)
\(\Rightarrow x\in\left\{1;9;81\right\}\)
a)
\(3(2x-\frac{1}{2})+2(\frac{3}{8}-x)=2,75\)
\(\Leftrightarrow 6x-\frac{3}{2}+\frac{3}{4}-2x=2,75\)
\(\Leftrightarrow 4x=\frac{7}{2}\Rightarrow x=\frac{7}{8}\)
b)
\(x-\frac{1}{3}(5-3x)=1\frac{1}{2}x+5\frac{1}{2}\)
\(\Leftrightarrow x-\frac{5}{3}+x=x+\frac{1}{2}x+\frac{11}{2}\)
\(\Leftrightarrow \frac{1}{2}x=\frac{43}{6}\) \(\Rightarrow x=\frac{43}{3}\)
c) \(\sqrt{x-1}=4\Rightarrow x-1=4^2\Rightarrow x=4^2+1=17\)
d)
\(|x|-5\frac{3}{7}|-x|-\frac{3}{4}=2|x|-1\frac{1}{7}\)
\(\Leftrightarrow |x|-\frac{38}{7}|x|-\frac{3}{4}=2|x|-\frac{8}{7}\)
\(\Leftrightarrow |x|(1-\frac{38}{7}-2)=\frac{3}{4}-\frac{8}{7}\)
\(\Leftrightarrow |x|.\frac{-45}{7}=\frac{-11}{28}\)
\(\Leftrightarrow |x|=\frac{11}{180}\Rightarrow \left[\begin{matrix} x=\frac{11}{180}\\ x=-\frac{11}{180}\end{matrix}\right.\)
|2x-1|=x+3
=> 2x-1=x+3 hoặc 2x-1=-(x+3)
2x-x=1+4 2x-1=-x-3
x=5 2x+x= 1-3
3x=-2
x=\(\frac{-2}{3}\)
|4x+7|=2x+5
=> 4x+7=2x+5
4x-2x=5-7
-2x=-2
x=1
=>4x+7=-(2x+5)
4x+7=-2x-5
4x+2x=-5-7
6x=-12
x=-2
a) \(2\sqrt{x}-10=20\left(ĐKXD:x\ge0\right)\)
\(\Leftrightarrow2\sqrt{x}=30\Leftrightarrow\sqrt{x}=15\)
\(\Leftrightarrow x=225\)
b) \(2x-\sqrt{x}=0\left(ĐKXĐ:x\ge0\right)\)
\(\Leftrightarrow2x=\sqrt{x}\Leftrightarrow4x^2=x\Leftrightarrow4x^2-x=0\Leftrightarrow x\left(4x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}}\)
Vậy ....
c) \(x+3\sqrt{x}=0\left(ĐKXĐ:x\ge0\right)\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}}\)
Vậy x = 0
d) \(\left(x-1\right)\left(x^2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x\in\varnothing\end{cases}}}\)
Vậy x = 1
a) Vì \(x^2\ge0;\left(y-\frac{1}{10}\right)^2\ge0\)
Mà theo đề bài: \(x^2+\left(y-\frac{1}{10}\right)^2=0\)
=> \(\begin{cases}x^2=0\\\left(y-\frac{1}{10}\right)^2=0\end{cases}\) => \(\begin{cases}x=0\\y-\frac{1}{10}=0\end{cases}\) => \(\begin{cases}x=0\\y=\frac{1}{10}\end{cases}\)
Vậy \(x=0;y=\frac{1}{10}\)
b) Vì \(\left(\frac{1}{2}x-5\right)^{26}\ge0;\left(y^2-\frac{1}{4}\right)^{10}\ge0\)
Mà theo đề bài: \(\left(\frac{1}{2}x-5\right)^{26}+\left(y^2-\frac{1}{4}\right)^{10}=0\)
=> \(\begin{cases}\left(\frac{1}{2}x-5\right)^{26}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{cases}\)=> \(\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\)=> \(\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\)=> \(\begin{cases}x=10\\y\in\left\{\frac{1}{2};\frac{-1}{2}\right\}\end{cases}\)
Vậy \(x=10;y\in\left\{\frac{1}{2};\frac{-1}{2}\right\}\)
Bài 1:
a: \(\left(2x-1\right)^4=16\)
=>2x-1=2 hoặc 2x-1=-2
=>2x=3 hoặc 2x=-1
=>x=3/2 hoặc x=-1/2
b: \(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}< =0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x+7=y=2\cdot3+7=13\end{matrix}\right.\)
c: \(10800=2^4\cdot3^3\cdot5^2\)
mà \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)
nên \(\left\{{}\begin{matrix}x+2=4\\x+1=3\\x=2\end{matrix}\right.\Leftrightarrow x=2\)
a) \(x^2-2=0\)
\(x^2=2\)
\(\Rightarrow x=\sqrt{2}\)
vậy \(x=\sqrt{2}\)
b) \(\sqrt{x}\left(x^2-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\x^2-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
vậy \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
a)\(x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
b)\(\sqrt{x}\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\x^2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\\x=-1\end{cases}}}\)