K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
8 tháng 11 2021

ta có : 

\(285=q^2-p^2=\left(p-q\right)\left(p+q\right)\)

vì 285 là số lẻ nên p,q không cùng tính chẵn lẻ, do đó tồn tại 1 số là số chẵn, mà chúng nguyên tố

nên số chẵn đó là 2, mà p nhỏ hơn q nên p=2

vậy ta có : 

\(q^2=285+2^2=289\Rightarrow q=17\)

5 tháng 2 2016

Câu 1:

a) Tìm số nguyên tố abcd sao cho ab ,cd là các số nguyên tố và b2=cd + b - c

b) Tìm các số tự nhiên có 2 chữ số mà số đó chia hết cho tích của chúng

c) Tìm số nguyên tố p và q sao cho 7p+q và pq+11 đều là các số nguyên tố

Câu 2:So sánh 2 số sau:

a)31111 và 17139

b)2011 . 23 mũ 2 mũ 3(xl nha,mình k viết dk lũy thừa tầng) và 2010.32 mũ 3 mũ 2

7 tháng 8 2023

\(p^2-2q^2=1\)

\(\Rightarrow p^2=2q^2+1\)

\(\Rightarrow p\) là số lẻ

Đặt \(p=2n+1\Rightarrow p^2=4n^2+4n+1\)

mà \(p^2=2q^2+1\)

\(\Rightarrow4n^2+4n+1=2q^2+1\)

\(\Rightarrow2\left(2n^2+2n\right)=2q\)

\(\Rightarrow2n^2+2n=q\)

\(\Rightarrow2\left(n^2+n\right)=q\)

\(\Rightarrow q\) là số chẵn

mà \(q\) là số nguyên tố

\(\Rightarrow q=2\)

\(\Rightarrow p^2=2.2^2+1=9\Rightarrow p=3\)

Vậy \(\left(p;q\right)\in\left\{3;2\right\}\) thỏa mãn đề bài

7 tháng 8 2023

Ta có: \(p^2-2q^2=1\)

Do 1 là số lẻ nên \(2q^2\) chẵn và \(p\) lẻ  

\(\Rightarrow p^2-1=2q^2\)

\(\Leftrightarrow\left(p-1\right)\left(p+1\right)=2q^2\)

Mà \(p\) lẻ nên \(p+1,p-1\) đều là chẵn 

\(\Rightarrow\left(q-1\right)\left(q+1\right)\) ⋮ 4

\(\Leftrightarrow q^2\) ⋮ 2 \(\Rightarrow q\) ⋮ 2 \(\Rightarrow q=2\)

\(\Rightarrow p^2=2\cdot2^2+1=9\Rightarrow q=3\)

Vậy: (q;p) là (2;3)

7 tháng 8 2017

1,

a/ n2 + 12n vay n co the = 2;3;5;7;11;...

=> nhung so nguyen to co 1 chu so vay n=2;3;5;7

b/ 3n + 6 vay n co the = 2;3;5;7;11;....

=> nhung so nguyen to + vao sao cho 6 ko qua 1 chu so vay n=2;3

3 tháng 3 2020

Bài 2 :

Tham khảo nha bạn !

Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)

Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

            Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý

3 tháng 3 2020

Vì a,b,c có vai trò như nhau. Giả sử a<b<c

Khi đó ab+bc+ca =< 3bc

=> abc<3bc => a<3 => a=2 (vì a là số nguyên tố)

Với a=2, ta có:

2bc < 2b+2c-bc =< 4c 

=> b<4 => b=2 hoặc b=3

Nếu b=2 thì 4c<2+4c thỏa mãn với c là số nguyên bất kì

Nếu b=3 thì 6c<6+5c => c<6 => c=3 hoặc c=5

Vậy các cặp số (a,b,c) cần tìm là: (2;2;p);(2;2;3);(2;3;5) và các hoán vị của chúng với p là số nguyên tố

DD
6 tháng 11 2021

Với \(p=2\)\(p^3+2=10\)là hợp số (loại). 

Với \(p=3\)\(2p-1=5,p^3+2=29\)đều là số nguyên tố (thỏa mãn) 

Với \(p>3\): khi đó \(p\)có dạng \(3k+1\)hoặc \(3k+2\).

Với \(p=3k+1\)\(p^3+2=\left(3k+1\right)^3+2\equiv1+2\left(mod3\right)\equiv0\left(mod3\right)\)

do đó \(p^3+2\)chia hết cho \(3\)mà \(p^3+2>3\)nên không là số nguyên tố. 

Với \(p=3k+2\)\(2p-1=2\left(3k+2\right)-1=6k+3⋮3\)

mà \(2p-1>3\)nên không là số nguyên tố. 

Vậy \(p=3\).

19 tháng 8 2016

3) Vì A = 62xy427 chia hết cho 99 => 62xy427 chia hết cho 9 và 11 

+ Do 62xy427 chia hết cho 9 => 6 + 2 + x + y + 4 + 2 + 7 cha hết cho 9 

                                             => 21 + x + y chia hết cho 9 

Mà x,y là chữ số => 0 < hoặc = x + y < hoặc = 18

                                             => x + y thuộc {6 ; 15} (1) 

+ Do 62xy427 chia hết cho 11 => (6 + x + 4 + 7) - (2 + y + 2) chia bết cho 11

                                             => (17 + x) - (4 + y) chia hết cho 11 

                                              => 13 + x - y chia hết cho 11 

Mà x, y là chữ số => -9 < hoặc = x - y < hoặc = 9 => x - y = -2 hoặc x - y = 9 

                              Nhưng nếu x - y = 9 thì x = 9; y = 0, không thỏa mãn đề bài => x - y = -2 

                                     Từ (1) mà tổng 2 số và hiệu của chúng luôn có cùng tính chẵn lẻ 

                                               => x + y = 6 => y = [6 - (-2)] : 2 = (6 + 2) : 2 = 4 

                                                                                   => x = 6 - 4 = 2