K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NM
3
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NM
1
NQ
0
NC
1
7 tháng 2 2020
x^2y -2x=5
x( xy-2)=5
Nếu x =1 và xy-2 =5
Suy ra x =1 và y=7
Nếu x = -1 và xy-2 = -5
Suy ra x = -1 và y=3
Tương tự bạn có thể làm lại với 2 TH rồi KL
TH3 : x = 5; xy-2 =1
TH4: x= -5 ; xy-2 = -1
TT
1
NM
Nguyễn Minh Quang
Giáo viên
8 tháng 11 2021
ta có :
\(285=q^2-p^2=\left(p-q\right)\left(p+q\right)\)
vì 285 là số lẻ nên p,q không cùng tính chẵn lẻ, do đó tồn tại 1 số là số chẵn, mà chúng nguyên tố
nên số chẵn đó là 2, mà p nhỏ hơn q nên p=2
vậy ta có :
\(q^2=285+2^2=289\Rightarrow q=17\)
TP
0
US
0
\(p^2-2q^2=1\)
\(\Rightarrow p^2=2q^2+1\)
\(\Rightarrow p\) là số lẻ
Đặt \(p=2n+1\Rightarrow p^2=4n^2+4n+1\)
mà \(p^2=2q^2+1\)
\(\Rightarrow4n^2+4n+1=2q^2+1\)
\(\Rightarrow2\left(2n^2+2n\right)=2q\)
\(\Rightarrow2n^2+2n=q\)
\(\Rightarrow2\left(n^2+n\right)=q\)
\(\Rightarrow q\) là số chẵn
mà \(q\) là số nguyên tố
\(\Rightarrow q=2\)
\(\Rightarrow p^2=2.2^2+1=9\Rightarrow p=3\)
Vậy \(\left(p;q\right)\in\left\{3;2\right\}\) thỏa mãn đề bài
Ta có: \(p^2-2q^2=1\)
Do 1 là số lẻ nên \(2q^2\) chẵn và \(p\) lẻ
\(\Rightarrow p^2-1=2q^2\)
\(\Leftrightarrow\left(p-1\right)\left(p+1\right)=2q^2\)
Mà \(p\) lẻ nên \(p+1,p-1\) đều là chẵn
\(\Rightarrow\left(q-1\right)\left(q+1\right)\) ⋮ 4
\(\Leftrightarrow q^2\) ⋮ 2 \(\Rightarrow q\) ⋮ 2 \(\Rightarrow q=2\)
\(\Rightarrow p^2=2\cdot2^2+1=9\Rightarrow q=3\)
Vậy: (q;p) là (2;3)