Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ mà bạn
Để 13 phần x-5 có giá trị nguyên thì:
13 chia hết cho x-5 nên x-5 thuộc ước của 13 ước của 13 gồm +-1;+-13
RỒI TỪ ĐÓ LẬP BẢNG GIÁ TRỊ VÀ TÌM X BÌNH THƯỜNG. !!!!!!!!!!
CHÚC BẠN LÀM BÀI TỐT
\(\frac{13}{x-5}\)
Vì \(13⋮\left(x-5\right)\)hay \(\left(x-5\right)\)là \(Ư\left(13\right)=\left\{\pm1;\pm13\right\}\)
Do đó :
x - 5 | 1 | -1 | 13 | -13 |
x | 6 | 4 | 18 | -8 |
Vậy ...................
~ Hok tốt ~
a) \(\frac{13}{x-5}\in Z\)(\(x-5\ne0\)
để biểu thức là số nguyên thì 13 phải chia hết cho x-5
Ư(13)=\(\mp1;\mp13\)
x-5=-1 => x= 4
x-5=1 => x=6
x-5=-13 => x= -8
x-5=13 => x=18
\(\frac{x+3}{x-2}=\frac{x}{x-2}+\frac{3}{x-2}\) ( x khác 2)
=> \(\hept{\begin{cases}x\inƯ\left(2\right)=\mp1;\mp2\\x-2\inƯ\left(3\right)=\mp1;\mp3\end{cases}}\)
x-2=-1 => x=1 (nhận)
làm như vậy đến hết chú ý điều kiện và ước của 2
c) \(\frac{2x}{x-2}\)(x khác 2)
\(\frac{2x}{x-2}=\frac{2}{x-2}\cdot x\)
=> \(x-2\inƯ\left(2\right)=\mp1;\mp2\)
x-2=-1 => x=1
làm như vậy đến hết chú ý điều kiện
\(\frac{12}{2x-1}\)nguyên khi và chỉ khi 12 chia hết cho 2x-1
=>2x-1\(\in\){-12;-6;-4;-3;-2;-1;1;2;3;4;6;12}
Ta có bảng sau:
2x-1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
2x | -11 | -5 | -3 | -2 | -1 | 0 | 2 | 3 | 4 | 5 | 7 | 13 |
x | -11/2 | -5/2 | -3/2 | -1 | -1/2 | 0 | 1 | 3/2 | 2 | 5/2 | 7/2 | 13/2 |
Vì x nguyên nên x\(\in\){-1;0;1;2}
TRÌNH BÀY NHƯ MÌNH CHUẨN HƠN BẠN À
\(\frac{12}{2x-1}\in Z< =>2x-1\in U\left(12\right)\)
2x-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
x | 1 | 0 | 1,5 | -0,5 | 2 | -1 | 2,5 | -1,5 | 3,5 | -2,5 | 6,5 | -5.5 |
Vay phan so nguyen <=> \(x\in\left\{-1;0;1;2\right\}\)
\(A=\frac{2x-1}{x-2}=\frac{2x-4+3}{x-2}=\frac{2\left(x-2\right)+3}{x-2}=2+\frac{3}{x-2}\)
\(A=2+\frac{3}{x-2}\in Z\) \(\Leftrightarrow\frac{3}{x-2}\in Z\)
\(\Rightarrow x-2\inƯ\left(3\right)=\left(-3;-1;1;3\right)\)
\(\Rightarrow x=-1;1;3;5\)
\(A=\frac{2x-1}{x-3}=\frac{2\left(x-3\right)+5}{x-3}=2+\frac{5}{x-3}\)
Để Amax thì \(\frac{5}{x-3}\) đạt GTLN
\(\Leftrightarrow x-3=1\)
\(\Leftrightarrow x=1+3\)
\(\Leftrightarrow x=4\)
Vậy Amax\(\Leftrightarrow x=4\)
a)để A có giá trị nguyên
=>-3 chia hết 2x-1
=>2x-1\(\in\){-3,-1,1,3}
=>2x-1\(\in\){-7;-3;1;5}
b)để B có giá trị nguyên
=>4x+5 chia hết 2x-1
<=>[2(2x-1)+7] chia hết 2x-1
=>2x-1\(\in\){1,-1,7,-7}
=>x\(\in\){1;-3;13;-15}
c tương tự
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
\(x=3\)
=3
k mình nhé