K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2016

\(E=\frac{3}{-x^2+2x-4}=\frac{3}{-\left(x^2-2x+1\right)-3}=\frac{3}{-\left(x-1\right)^2-3}\)

Ta có : \(-\left(x-1\right)^2-3\le-3\Rightarrow\frac{1}{-\left(x-1\right)^2-3}\ge-\frac{1}{3}\Rightarrow E\ge-1\)

Vậy MIN E = -1 <=> x = 1

6 tháng 9 2018

Ta có E=x2+2x+1+3

=(x+1)2+3

Vì \(\left(x+1\right)^2\ge0\) Nên\(\left(x+1\right)^2+3\ge3\)

Dấu ''='' xảy ra khi x+1=0 hay x=-1

Vậy GTNN của E=3 khi x=-1

6 tháng 9 2018

E = x2 + 2x + 4 = x2 + 2x + 1 + 3 

                        = ( x+1 )2 +3 > 3

Dấu "=" xảy ra <=> (x+1)2=0

                       <=> x+1=0

                       <=> x=-1

Vậy Emin = 3 <=> x=-1

5 tháng 4 2016

bài 1:x2-2x+y2+4y+8=x2-2x+1+y2+4y+4+3=(x-1)2+(y+2)2+3>=3

maxE=3<=>X=1;y=-2

16 tháng 9 2017

giúp mk vs nha , mk đăng cần rất gấp

16 tháng 9 2017

mình hk bít vít

4 tháng 8 2019

\(C=2x^2+6x-2=2\left(x^2+3x-1\right)\)

\(=2\left(x^2+2.x.\frac{3}{2}+\frac{9}{4}-\frac{13}{4}\right)\)

\(=2\left(x+\frac{3}{2}\right)^2-\frac{13}{2}\ge-\frac{13}{2}\)

Đẳng thức xảy ra khi \(x=-\frac{3}{2}\)

Vậy...

E tương tự

F đang suy ra nghĩ

\(G=2x^2+2xy+y^2-2x+2y+2\)

\(=2x^2+2\left(y-1\right)x+y^2+2y+2\)

\(=2\left[x^2+2.x.\frac{y-1}{2}+\frac{\left(y-1\right)^2}{4}\right]+y^2+2y+2-\frac{\left(y-1\right)^2}{2}\)

\(=2\left(x+\frac{y-1}{2}\right)^2+\frac{y^2+6y+3}{2}\)

\(=2\left(x+\frac{y-1}{2}\right)^2+\frac{y^2+6y+9}{2}-\frac{6}{2}\)

\(=2\left(x+\frac{y-1}{2}\right)^2+\frac{1}{2}\left(y+3\right)^2-3\ge-3\)

Đẳng thức xảy ra khi x=2 y = -3

Vậy..

4 tháng 8 2019

Làm luôn câu E:

\(E=-2x^2+3x+1=-2\left(x^2-\frac{3}{2}x-\frac{1}{2}\right)\)

\(=-2\left(x^2-2.x.\frac{3}{4}+\frac{9}{16}-\frac{17}{16}\right)\)

\(=-2\left(x-\frac{3}{4}\right)^2+\frac{17}{8}\le\frac{17}{8}\)

ĐẲng thức xảy ra khi x = 3/4

P/s: Chắc là có tính nhầm đấy:)

17 tháng 5 2017

\(D=x^2+2y^2-2xy-3y+2x-5\)

\(=\left(x^2-2xy+2x+y^2-2y+1\right)+\left(y^2-y-6\right)\)

\(=\left(x-y+1\right)^2+\left(y^2-y-\frac{24}{4}\right)\)

\(=\left(x-y+1\right)^2+\left(y^2-y+\frac{1}{4}\right)-\frac{25}{4}\)

\(=\left(x-y+1\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\forall x,y\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x-y+1=0\\y-\frac{1}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{2}\end{cases}}\)

\(E=\left(3x-1\right)^2-4\left|3x-1\right|+5\)

\(=9x^2-6x+1-4\left|3x-1\right|+5\)

*)Xét \(x\ge\frac{1}{3}\Rightarrow3x-1\ge0\Rightarrow\left|3x-1\right|=3x-1\) thì:

\(E=9x^2-6x+1-4\left(3x-1\right)+5\)

\(=9x^2-6x+6-12x+4\)\(=9x^2-18x+10\)

\(=9x^2-18x+9+1=9\left(x^2-2x+1\right)+1\)

\(=9\left(x-1\right)^2+1\ge1\forall x\)

*)Xét \(x< \frac{1}{3}\Rightarrow3x-1< 0\Rightarrow\left|3x-1\right|=-3x+1\) thì:

\(E=9x^2-6x+1-4\left(-3x+1\right)+5\)

\(=9x^2-6x+6+12x-4=9x^2+6x+2\)

\(=9\left(x^2+\frac{2x}{3}+\frac{1}{9}\right)+1=9\left(x+\frac{1}{3}\right)^2+1\ge1\forall x\)

Ta thấy cả 2 trường hợp đều có Min=1 vậy ta chốt là Min=1 nhé

Đẳng thức xảy ra khi \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=1\end{cases}}\)

19 tháng 5 2017

câu b) hơi dài , tôi làm cách khác

đặt /3x-1/=t

ta có E=\(t^2-4t+5=\left(t^2-4t+4\right)+1=\left(t-2\right)^2+1>=1\)

=>Min E=1 dấu "=" xảy ra khi t-2=0<=>t=2=>/3x-1/=2=>\(\orbr{\begin{cases}3x-1=2\\3x-1=-2\end{cases}< =>\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}}\)

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

20 tháng 1 2018

Ta có: \(A=2x^2-8x+1=2x^2-2.2x.2+2^2-3\)

                                                   \(=\left(2x-2\right)^2-3\)

Vì \(\left(2x-2\right)^2\ge0\left(\forall x\right)\)

\(\Rightarrow A=\left(2x-2\right)^2-3\le-3\left(\forall x\right)\)

Dấu "=" xảy ra khi \(2x-2=0\Rightarrow x=1\)

Vậy Amax = -3 khi x = 1

20 tháng 1 2018

Ta có \(B=-5x^2-4x+1=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)=-5\left(x^2+2.\frac{2}{5}x+\frac{4}{25}-\frac{9}{25}\right)=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\ge\frac{9}{5}\forall x\)

Dấu "=" xảy ra khi x+2/5=0 => x=-2/5

Vậy GTNN của B là 9/5 khi x=-2/5