Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Copy có khác, ko đọc đc j!!! ʌl
Câu 3:
1)
a) Ta có: 3x−2=2x−33x−2=2x−3
⇔3x−2−2x+3=0⇔3x−2−2x+3=0
⇔x+1=0⇔x+1=0
hay x=-1
Vậy: x=-1
b) Ta có: 3−4y+24+6y=y+27+3y3−4y+24+6y=y+27+3y
⇔27+2y=27+4y⇔27+2y=27+4y
⇔27+2y−27−4y=0⇔27+2y−27−4y=0
⇔−2y=0⇔−2y=0
hay y=0
Vậy: y=0
c) Ta có: 7−2x=22−3x7−2x=22−3x
⇔7−2x−22+3x=0⇔7−2x−22+3x=0
⇔−15+x=0⇔−15+x=0
hay x=15
Vậy: x=15
d) Ta có: 8x−3=5x+128x−3=5x+12
⇔8x−3−5x−12=0⇔8x−3−5x−12=0
⇔3x−15=0⇔3x−15=0
⇔3(x−5)=0⇔3(x−5)=0
Vì 3≠0
nên x-5=0
hay x=5
Vậy: x=5
a) 3x - 2 = 2x - 3
\(\Leftrightarrow\) 3x - 2 - 2x + 3 = 0
\(\Leftrightarrow\) x + 1 = 0
\(\Rightarrow\) x = -1
b) 3 - 4y + 24 + 6y = y + 27 + 3y
\(\Leftrightarrow\) 3 - 4y + 24 + 6y - y - 27 - 3y = 0
\(\Leftrightarrow\) -2y = 0
\(\Rightarrow\) y = 0
c)7 - 2x = 22 - 3x
\(\Leftrightarrow\) 7 - 2x - 22 + 3x = 0
\(\Leftrightarrow\) -15 + x = 0
\(\Rightarrow\) x = 15
d) 8x - 3 = 5x + 12
\(\Leftrightarrow\) 8x - 3 - 5x - 12 = 0
\(\Leftrightarrow\)3x -15 = 0
\(\Leftrightarrow\) 3x = 15
\(\Rightarrow\) x = 5
e) x - 12 + 4x = 25 + 2x - 1
\(\Leftrightarrow\) x - 12 + 4x - 25 - 2x + 1 = 0
\(\Leftrightarrow\) 3x - 36 = 0
\(\Leftrightarrow\) 3x = 36
\(\Rightarrow\) x = 12
f ) x + 2x + 3x - 19 = 3x + 5
\(\Leftrightarrow\) x + 2x + 3x - 19 - 3x - 5 = 0
\(\Leftrightarrow\)3x - 24 = 0
\(\Leftrightarrow\) 3x = 24
\(\Rightarrow\) x = 8
g) 11+ 8x - 3 = 5x - 3 +x
\(\Leftrightarrow\)8x + 8 = 6x - 3
\(\Leftrightarrow\)8x - 6x = -3 - 8
\(\Leftrightarrow\)2x = -11
\(\Rightarrow\)x = \(-\frac{11}{2}\)
h) 4 - 2x +15 = 9x + 4 -2
\(\Leftrightarrow\)19 - 2x = 7x + 4
\(\Leftrightarrow\)-2x - 7x = 4 - 19
\(\Leftrightarrow\)-9x = -15
\(\Rightarrow\)x = \(\frac{15}{9}\) = \(\frac{5}{3}\)
g) \(\left(2x-1\right)^2-\left(2x+4\right)^2=0\)
\(\Leftrightarrow\left(2x-1+2x+4\right)\left(2x-1-2x-4\right)=0\)
\(\Leftrightarrow-5\left(4x+3\right)=0\)
\(\Leftrightarrow4x+3=0\)
\(\Leftrightarrow4x=-3\)
\(\Leftrightarrow x=\frac{-3}{4}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-3}{4}\right\}\)
h) \(\left(2x-3\right)\left(3x+1\right)-x\left(6x+10\right)=30\)
\(\Leftrightarrow3x\left(2x-3\right)+\left(2x-3\right)-6x^2-10x=30\)
\(\Leftrightarrow6x^2-9x+2x-3-6x^2-10x=30\)
\(\Leftrightarrow-9x+2x-3-10x=30\)
\(\Leftrightarrow-17x-3=30\)
\(\Leftrightarrow-17x=33\)
\(\Leftrightarrow x=\frac{-33}{17}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-33}{17}\right\}\)
Bài 1:
a: \(A=3\left(x^2-2x+1\right)-\left(x^2+2x+1\right)+2\left(x^2-9\right)-\left(4x^2+12x+9\right)-5+20x\)
\(=3x^2-6x+3-x^2-2x-1+2x^2-18-\left(4x^2+12x+9\right)-5+20x\)
\(=4x^2-8x-16-5+20x-4x^2-12x-9\)
\(=-30\)
b: \(B=5x\left(x^2-49\right)-x\left(4x^2-4x+1\right)-\left(x^3+4x^2-246x\right)-175\)
\(=5x^3-245x-4x^3+4x^2-x-x^3-4x^2+246x-175\)
\(=-175\)
d: \(D=25x^2-20x+4-36x^2-12x-1+11\left(x^2-4\right)-48+32x\)
\(=-11x^2-32x+3-48+32x+11x^2-44\)
=-89
\(A=49x^2-28x+25\)
\(A=\left(7x\right)^2-2.7x.2+4-4+25\)
\(A=\left(7x-2\right)^2+21\)
Vì \(\left(7x-2\right)^2\ge0\) với mọi x
\(\Rightarrow\left(7x-2\right)^2+21\ge21\) với mọi x
\(\Rightarrow Amin=21\Leftrightarrow7x-2=0\)
\(\Rightarrow7x=2\)
\(\Rightarrow x=\dfrac{2}{7}\)
Vậy \(Amin=21\Leftrightarrow x=\dfrac{2}{7}\)
\(B=8x^2-28x-1\)
\(B=2\left(4x^2-14x-\dfrac{1}{2}\right)\)
\(B=2\left[\left(2x\right)^2-2.2x.\dfrac{7}{2}+\left(\dfrac{7}{2}\right)^2-\left(\dfrac{7}{2}\right)^2-\dfrac{1}{2}\right]\)
\(B=2\left[\left(2x\right)^2-2.2x.\dfrac{7}{2}+\left(\dfrac{7}{2}\right)^2-\dfrac{51}{4}\right]\)
\(B=2\left(2x-\dfrac{7}{2}\right)^2-\dfrac{51}{2}\)
Vì \(2\left(2x-\dfrac{7}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow2\left(2x-\dfrac{7}{2}\right)^2-\dfrac{51}{2}\ge-\dfrac{51}{2}\)
\(\Rightarrow Bmin=-\dfrac{51}{2}\Leftrightarrow2x-\dfrac{7}{2}=0\)
\(\Rightarrow2x=\dfrac{7}{2}\)
\(\Rightarrow x=\dfrac{7}{4}\)
Vậy \(Bmin=-\dfrac{51}{2}\Leftrightarrow x=\dfrac{7}{4}\)
\(C=\left(2x^2+5\right)^2+10\)
Vì \(\left(2x^2+5\right)^2\ge0\) với mọi x
\(\Rightarrow\left(2x^2+5\right)^2+10\ge10\) với mọi x
\(\Rightarrow Cmin=10\Leftrightarrow2x^2+5=0\)
\(\Rightarrow2x^2=-5\)
\(\Rightarrow x^2=-\dfrac{5}{2}\)
\(\Rightarrow\) Không tồn tại x thỏa mãn
Vậy C không có giá trị nhỏ nhất
P/s: Câu c mình làm không có chắc nha, thấy nó sao sao ấy, không biết có sai đề không?
\(D=3x^2-8x+7\)
\(D=3\left(x^2-\dfrac{8}{3}x+\dfrac{7}{3}\right)\)
\(D=3\left(x^2-2.x.\dfrac{4}{3}+\dfrac{16}{9}-\dfrac{16}{9}+\dfrac{7}{3}\right)\)
\(D=3\left(x^2-2.x.\dfrac{4}{3}+\dfrac{16}{9}+\dfrac{5}{9}\right)\)
\(D=3\left(x-\dfrac{4}{3}\right)^2+\dfrac{5}{3}\)
Vì \(3\left(x-\dfrac{4}{3}\right)^2\ge0\) với mọi x
\(\Rightarrow3\left(x-\dfrac{4}{3}\right)^2+\dfrac{5}{3}\ge\dfrac{5}{3}\)
\(\Rightarrow Dmin=\dfrac{5}{3}\Leftrightarrow x-\dfrac{4}{3}=0\)
\(\Rightarrow x=\dfrac{4}{3}\)
Vậy \(Dmin=\dfrac{5}{3}\Leftrightarrow x=\dfrac{4}{3}\)
\(E=x^4-2x^2+12\)
\(E=\left(x^2\right)^2-2x^2+1+11\)
\(E=\left(x^2-1\right)^2+11\)
Vì \(\left(x^2-1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x^2-1\right)^2+11\ge11\) với mọi x
\(\Rightarrow Emin=11\Leftrightarrow x^2-1=0\)
\(\Rightarrow x^2=1\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy \(Emin=11\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(F=4x^2+15x+2\)
\(F=\left(2x\right)^2+2.2x.\dfrac{15}{4}+\left(\dfrac{15}{4}\right)^2-\left(\dfrac{15}{4}\right)^2+2\)
\(F=\left(2x+\dfrac{15}{4}\right)^2-\dfrac{225}{16}+\dfrac{32}{16}\)
\(F=\left(2x+\dfrac{15}{4}\right)^2-\dfrac{193}{16}\)
Vì \(\left(2x+\dfrac{15}{4}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(2x+\dfrac{15}{4}\right)^2-\dfrac{193}{16}\ge-\dfrac{193}{16}\)
\(\Rightarrow Fmin=-\dfrac{193}{16}\Leftrightarrow2x+\dfrac{15}{4}=0\)
\(\Rightarrow2x=-\dfrac{15}{4}\)
\(\Rightarrow x=-\dfrac{15}{4}.\dfrac{1}{2}\)
\(\Rightarrow x=-\dfrac{15}{8}\)
Vậy \(Fmin=-\dfrac{193}{16}\Leftrightarrow x=-\dfrac{15}{8}\)
\(H=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)\)
\(H=\left(x^2+4x-5\right)\left(x^2+4x+5\right)\)
\(H=\left(x^2+4x\right)^2-5^2\)
\(H=\left(x^2+4x\right)^2-25\)
Vì \(\left(x^2+4x\right)^2\ge0\)
\(\Rightarrow\left(x^2+4x\right)^2-25\ge-25\) với mọi x
\(\Rightarrow Hmin=-25\Leftrightarrow x^2+4x=0\)
\(\Rightarrow x\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy \(Hmin=-25\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
\(I=\left(x^6+6\right)^2\)
Vì \(\left(x^6+6\right)^2\ge0\)
\(\Rightarrow Imin=0\Leftrightarrow x^6+6=0\)
\(\Rightarrow\left(x^3\right)^2=-6\)
\(\Rightarrow\) Không tồn tại x
Vậy I không có giá trị nhỏ nhất
\(A=49x^2-28x+25=\left(49x^2-28x+1\right)+24=\left(7x-1\right)^2+24\ge24\)
Vậy GTNN của A là 24 khi x = \(\dfrac{1}{7}\)
\(B=8x^2-28x-1=8\left(x^2-\dfrac{7}{2}x+\dfrac{49}{16}\right)-\dfrac{51}{2}=8\left(x-\dfrac{7}{4}\right)^2-\dfrac{51}{2}\ge-\dfrac{51}{2}\)
Vậy GTNN của B là \(-\dfrac{51}{2}\) khi x = \(\dfrac{7}{4}\)
\(C=\left(2x^2+5\right)^2+10=4x^4+20x^2+35\ge35\)
Vậy GTNN của C là 35 khi x = 0
\(D=3x^2-8x+7=3\left(x^2-\dfrac{8}{3}x+\dfrac{16}{9}\right)+\dfrac{5}{3}=3\left(x-\dfrac{4}{3}\right)^2+\dfrac{5}{3}\ge\dfrac{5}{3}\)
Vậy GTNN của D là \(\dfrac{5}{3}\) khi x = \(\dfrac{4}{3}\)
\(E=x^4-2x^2+12=\left(x^4-2x^2+1\right)+11=\left(x^2-1\right)^2+11\ge11\)
Vậy GTNN của E là 11 khi x = 1 hoặc x = -1
\(F=4x^2+15x+2=\left(4x^2+15x+\dfrac{225}{16}\right)-\dfrac{193}{16}=\left(2x+\dfrac{15}{4}\right)^2-\dfrac{193}{16}\ge-\dfrac{193}{16}\)
Vậy GTNN của F là \(-\dfrac{193}{16}\) khi x = \(-\dfrac{15}{8}\)
\(G=8\left(a+2\right)^3-\left(2a+1\right)^3\)
\(G=36a^2+90a+63\)
\(G=9\left(4a^2+10a+7\right)\)
\(G=9\left(4a^2+10a+\dfrac{25}{4}\right)+\dfrac{27}{4}\)
\(G=9\left(2a+\dfrac{5}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}\)
Vậy GTNN của G là \(\dfrac{27}{4}\) khi x = \(-\dfrac{5}{4}\)
\(H=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)\)
\(H=x^4+8x^3+16x^2-25\)
\(H=\left(x^2+4x\right)^2-25\ge-25\)
Vậy GTNN của H là -25 khi x = -4 hoặc x = 0
\(I=\left(x^6+6\right)^2=x^{12}+12x^6+36\ge36\)
Vậy GTNN của I là 36 khi x = 0
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Bài 2:
a) Thay x=-2 vào phương trình 2x+k=x-1, ta được
2*(-2)+k=-2-1
⇔-4+k=-3
⇔k=-3-(-4)=-3+4=1
Vậy: Khi k=1 thì phương trình 2x+k=x-1 có nghiệm là x=-2
b) Thay x=2 vào phương trình (2x+1)(9x+2k)-5(x+2)=40, ta được
(2*2+1)*(9*2+2k)-5*(2+2)=40
⇔5*(18+2k)-20=40
⇔5*(18+2k)=40+20
⇔18+2k=12
⇔2k=12-18=-6
⇔k=-3
Vậy: khi k=-3 thì phương trình (2x+1)(9x+2k)-5(x+2)=40 có nghiệm là x=2
c) Thay x=1 vào phương trình 2(2x+1)+18=3(x+2)(2x+k), ta được
2*(2*1+1)+18=3*(1+2)*(2*1+k)
⇔2*3+18=3*3*(2+k)
⇔24=9*(2+k)
⇔\(2+k=\frac{24}{9}=\frac{8}{3}\)
\(\Leftrightarrow k=\frac{8}{3}-2=\frac{2}{3}\)
Vậy: khi \(k=\frac{2}{3}\) thì phương trình 2(2x+1)+18=3(x+2)(2x+k) có nghiệm là x=1
Ta có: \(A=2x^2-8x+1=2x^2-2.2x.2+2^2-3\)
\(=\left(2x-2\right)^2-3\)
Vì \(\left(2x-2\right)^2\ge0\left(\forall x\right)\)
\(\Rightarrow A=\left(2x-2\right)^2-3\le-3\left(\forall x\right)\)
Dấu "=" xảy ra khi \(2x-2=0\Rightarrow x=1\)
Vậy Amax = -3 khi x = 1
Ta có \(B=-5x^2-4x+1=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)=-5\left(x^2+2.\frac{2}{5}x+\frac{4}{25}-\frac{9}{25}\right)=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\ge\frac{9}{5}\forall x\)
Dấu "=" xảy ra khi x+2/5=0 => x=-2/5
Vậy GTNN của B là 9/5 khi x=-2/5