Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2mx+2m-3=0\)
\(\Delta^,_x=m^2-2m+3\)
\(=\left(m-1\right)^2+2\ge2>0;\forall m\)
\(\Rightarrow\)pt luôn có 2 nghiệm phân biệt \(x_1,x_2\)
Theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=2m-3\end{cases}}\)
Ta có : \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)
\(\Leftrightarrow1-x_1^2-x_2^2+x_1^2x_2^2=-4\)
\(\Leftrightarrow1-\left(x_1^2+x_2^2\right)+\left(x_1x_2\right)^2=-4\)
\(\Leftrightarrow1-\left(x_1+x_2\right)^2+2x_1x_2+\left(x_1x_2\right)^2=-4\)
\(\Leftrightarrow1-4m^2+4m-6+\left(2m-3\right)^2=-4\)
\(\Leftrightarrow-8m+4=-4\)
\(\Leftrightarrow m=1\)
Vậy m=1 thì pt có 2 nghiệm phân biệt \(x_1,x_2\)thỏa mãn hệ thức \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)
a, bn chỉ cần thay m =-2 vào pt là đc
b, thay x=-2 vào pt tac đc 4+6m+m^2-3m=0
m^2+3m+4=0
m=-1 và m=-4
với m=-1 thì x=2 với m=-4 thì vo nghiệm
vậy nghiệm còn lại là 2
c bn sd đen ta ' là đc
d - bn viết hệ thức viet
x1^2+x2^2=8
(X1+x2)^2-2x1.x2=8
- thay viet vào
a, \(\Delta'=1-\left(2m-5\right)=6-2m\)
để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)
b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)
\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm)
a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)
Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)
b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)
Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)
Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)
Vậy để [...] thì \(m=\frac{39}{14}\)
Để pt (1) có 2 nghiệm phân biệt thì \(\Delta=m^2+16>0\)với \(\forall m\)suy ra pt (1) có 2 nghiệm phân biệt
Theo hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=-4\end{cases}}\)
Khi đó \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=10\Leftrightarrow x_1^2+x_2^2+2\left(x_1+x_2\right)+2=10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2m=8\Leftrightarrow m^2+2m+8=8\Leftrightarrow m\left(m+2\right)=0\Leftrightarrow\hept{\begin{cases}m=0\\m=-2\end{cases}}\)
Vậy ...
Ta có: Đenta= (-1)2-4k
Để phương trình có 2 nghiệm phân biệt thì đenta > 0
<=> 1-4k>0
<=>k<1/4
Theo Vi-et ta có:
x1+x2=1
x1x2=k
Theo đề bài: x12+x22=3
<=> (x1+x2)2-2x1x2=3
<=> 12-2k=3
<=> -2k=2
<=> k = -1 (thỏa mãn)
Vậy k=-1 là giá trị cần tìm
j
a) Để phương trình có 2 nghiệm phân biệt thì \(\Delta\)>0
\(\Leftrightarrow\) (-3)^2 - 4.(m+4) >0
\(\Leftrightarrow\) 9 - 4m - 16 >0
\(\Leftrightarrow\) -4m > 7
\(\Leftrightarrow\) m < -7/4
Vậy để phương trình có nghiệm x1 và x2 thì m<-7/4
b) Điều kiện : m<=-7/4
Ta có phương trình sau :
x1^2 + x2^2 +15= x1^2 . x2^2
\(\Leftrightarrow\) (x1 + x2)^2 -2x1x2 +15 = (x1x2) . (x1x2)
Áp dụng hệ thức Vi-ét ta có :
(3m)^2 - 2.4 + 15 = 4.4
\(\Leftrightarrow\)9m^2 = 9
\(\Leftrightarrow\) m^2 = 1
\(\Leftrightarrow\) m = \(\sqrt{1}\)
\(\Rightarrow\) m1= 1 ( loại)
m2= -1 ( loại)
SUY RA: phương trình không tồn tại m để có 2 nghiệm thỏa mãn phương trình đã cho