Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
b/ x22 + x2 = x12 + x1
Chuyển thành --> x12 + x1 - x2 -x22 = 0
x12 -x22 ( Hằng đẳng thức) = (x1-x2)(x1+x2)
x1-x2=0
Có được (x1-x2)(x1+x2) -(x1+x2)=0
Thay vi - et vào ta có ( x1-x2) ( 2m) - ( 2m) =0
x1-x2=0
( x1-x2)2 =02
(x1+x2)2 -4x1.x2 =0
---> Thay vi-et vào được 4m2 -16=0 --> m= +2 và -2 ( xem điều kiện câu a để nhận hay loại)
a) Vì \(x=-2\)là một nghiệm của phương trình
\(\Rightarrow\)Thay \(x=-2\)vào pt(1) ta được:
\(\left(-2\right)^2-2.m.\left(-2\right)+4=0\)\(\Leftrightarrow4+4m+4=0\)
\(\Leftrightarrow4m+8=0\)\(\Leftrightarrow4m=-8\)\(\Leftrightarrow m=-2\)
Vậy \(m=-2\)
a, Để pt có nghiệm thì \(\Delta\ge0\)
Hay: \(\left(-3\right)^2-4\left(m-1\right)\ge0\)
\(\Leftrightarrow9-4m+4\ge0\)
\(\Leftrightarrow-4m\ge-13\)
\(\Leftrightarrow m\le\frac{13}{4}\)
b, Với \(m\le\frac{13}{4}\), theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=3\\x_1x_2=m-1\end{cases}}\)
Ta có: \(x_1^2-x_2^2=15\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)=15\)
\(\Leftrightarrow\left(x_1+x_2\right)\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=15\)
\(\Leftrightarrow3\sqrt{3^2-4\left(m-1\right)}=15\)
\(\Leftrightarrow\sqrt{9-4m+4}=5\)
\(\Leftrightarrow\sqrt{13-4m}=5\)
\(\Leftrightarrow13-4m=25\)
\(\Leftrightarrow4m=-12\)
\(\Leftrightarrow m=-3\left(tm\right)\)
=.= hk tốt!!
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
a, Với \(m=\sqrt{2}\) thì pt trở thành
\(x^2-2x-2\sqrt{2}+1=0\)
Ta có \(\Delta'=1+2\sqrt{2}-1=2\sqrt{2}>0\)
Nên pt có 2 nghiệm phân biệt
\(\orbr{\begin{cases}x=1-\sqrt{2\sqrt{2}}\\x=1+\sqrt{2\sqrt{2}}\end{cases}}\)
b, Ta có \(\Delta'=1+2m-1=2m\)
Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow m\ge0\)
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-2m+1\end{cases}}\)
Ta có \(x_2^2\left(x_1^2-1\right)+x_1^2\left(x_2^2-1\right)=8\)
\(\Leftrightarrow\left(x_1x_2\right)^2-x_2^2+\left(x_1x_2\right)^2-x_1^2=8\)
\(\Leftrightarrow2\left(x_1x_2\right)^2-\left(x_1+x_2\right)^2+2x_1x_2=8\)
\(\Leftrightarrow2\left(-2m+1\right)^2-2^2+2\left(-2m+1\right)=8\)
\(\Leftrightarrow2\left(4m^2-4m+1\right)-4-4m+2=8\)
\(\Leftrightarrow8m^2-8m+2-4m-10=0\)
\(\Leftrightarrow8m^2-12m-8=0\)
\(\Leftrightarrow2m^2-3m-2=0\)
\(\Leftrightarrow\left(m-2\right)\left(2m+1\right)=0\)
\(\Leftrightarrow m=2\left(Do\cdot m>0\right)\)
a, Để phương trình có 2 nghiệm phân biệt thì
\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)>0\)
\(< =>4m^2-4m+1-4m^2+1>0\)
\(< =>2-4m>0\)\(< =>2>4m< =>m< \frac{2}{4}\)
b , bạn dùng vi ét là ra
a) Để phương trình có 2 nghiệm phân biệt thì \(\Delta\)>0
\(\Leftrightarrow\) (-3)^2 - 4.(m+4) >0
\(\Leftrightarrow\) 9 - 4m - 16 >0
\(\Leftrightarrow\) -4m > 7
\(\Leftrightarrow\) m < -7/4
Vậy để phương trình có nghiệm x1 và x2 thì m<-7/4
b) Điều kiện : m<=-7/4
Ta có phương trình sau :
x1^2 + x2^2 +15= x1^2 . x2^2
\(\Leftrightarrow\) (x1 + x2)^2 -2x1x2 +15 = (x1x2) . (x1x2)
Áp dụng hệ thức Vi-ét ta có :
(3m)^2 - 2.4 + 15 = 4.4
\(\Leftrightarrow\)9m^2 = 9
\(\Leftrightarrow\) m^2 = 1
\(\Leftrightarrow\) m = \(\sqrt{1}\)
\(\Rightarrow\) m1= 1 ( loại)
m2= -1 ( loại)
SUY RA: phương trình không tồn tại m để có 2 nghiệm thỏa mãn phương trình đã cho