K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

a, bn chỉ cần thay m =-2 vào pt là đc

b, thay x=-2 vào pt tac đc 4+6m+m^2-3m=0

m^2+3m+4=0

m=-1 và m=-4

với m=-1 thì x=2   với m=-4 thì vo nghiệm

vậy nghiệm còn lại là 2

20 tháng 3 2018

c bn sd đen ta ' là đc

d - bn viết hệ thức viet 

x1^2+x2^2=8

(X1+x2)^2-2x1.x2=8

- thay viet vào

17 tháng 5 2018

Bạn tham khảo ở đường link dưới nhé

Câu hỏi của Châu Minh Khang - Toán lớp 9 - Học toán với OnlineMath

20 tháng 7 2018

a) \(\Delta'=\left(m+1\right)^2-\left(m^2-3m\right)=5m+1\)

Để phương trình có nghiệm duy nhất thì \(\Delta'=0\Leftrightarrow5m+1=0\Leftrightarrow m=-\frac{1}{5}.\)

b) Phương trình có 2 nghiệm phân biệt thì \(5m+1>0\Leftrightarrow m>-\frac{1}{5}.\)

Theo hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2-3m\end{cases}}\)

Ta có: \(\left(x_1-2\right)\left(x_2-2\right)=x_1^2+x_2^2\Leftrightarrow x_1x_2-2\left(x_1+x_2\right)+4=\left(x_1+x_2\right)^2-2x_1x_2\)

\(\Leftrightarrow m^2-3m-4\left(m+1\right)+4=4\left(m+1\right)^2-2m^2+6m\)

\(\Leftrightarrow m^2-7m=2m^2+14m+4\)

\(\Leftrightarrow m^2+21m+4=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{-21+\sqrt{17}}{2}\left(tm\right)\\m=\frac{-21-\sqrt{17}}{2}\left(l\right)\end{cases}}\)

Vậy \(m=\frac{-21+\sqrt{17}}{2}\)

21 tháng 7 2018

\(\Delta\)= b2-4ac hình như thiếu số 4

5 tháng 3 2022

a, \(\Delta'=1-\left(2m-5\right)=6-2m\)

để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)

b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)

\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm) 

5 tháng 3 2022

a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)

Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)

b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)

Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)

Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)

Vậy để [...] thì \(m=\frac{39}{14}\)

5 tháng 6 2018

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0

Nếu x-5=0 suy ra x=5

Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0

Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0

Suy ra x=1 hoặc x=6.

4 tháng 7 2020

bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)

\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)

\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)

thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)

\(\left(++\right)< =>x-5=0< =>x=5\)

Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)

2 tháng 7 2020

a, Để phương trình có 2 nghiệm phân biệt thì 

\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)>0\)

\(< =>4m^2-4m+1-4m^2+1>0\)

\(< =>2-4m>0\)\(< =>2>4m< =>m< \frac{2}{4}\)

b , bạn dùng vi ét là ra