Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
a) x1^2+x2^2=(x1+x2)^2-2x1x2
x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1x2)
áp dụng viét thay vô
b) giải hệ pt
đenta>=0
x1+x2=-m
x1x2=m+3
và 2x1+3x2=5
c)thay x=-3 vào tìm ra m rồi thay m đó vô giải ra lại
d)áp dụng viét
x1+x2=-m
x1x2=m+3
CT liên hệ ko phụ thuộc m là x1 +x2+x1x2=-m+m+3=3
a, bn chỉ cần thay m =-2 vào pt là đc
b, thay x=-2 vào pt tac đc 4+6m+m^2-3m=0
m^2+3m+4=0
m=-1 và m=-4
với m=-1 thì x=2 với m=-4 thì vo nghiệm
vậy nghiệm còn lại là 2
c bn sd đen ta ' là đc
d - bn viết hệ thức viet
x1^2+x2^2=8
(X1+x2)^2-2x1.x2=8
- thay viet vào
1) vì pt có 1 nghiệm x = 2 nên
\(2^2-2\left(m+1\right).2+m-4=0\)
\(\Leftrightarrow4-4m-4+m-4=0\)
\(\Leftrightarrow-3m=4\)
\(\Leftrightarrow m=-\frac{4}{3}\)
Thay \(m=-\frac{4}{3}\)vào pt đã cho ta đc
\(x^2-2\left(-\frac{4}{3}+1\right)x-\frac{4}{3}-4=0\)
\(\Leftrightarrow x^2+\frac{2x}{3}-\frac{16}{3}=0\)
\(\Leftrightarrow3x^2+2x-16=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{8}{3}\end{cases}}\)
Vậy nghiệm còn lại của pt là \(x=-\frac{8}{3}\)
2) Có \(\Delta'=\left(m+1\right)^2-m+4\)
\(=m^2+2m+1-m+4\)
\(=m^2+m+5\)
\(=\left(m+\frac{1}{2}\right)^2+\frac{19}{4}>0\forall m\)
=> Pt luôn có 2 nghiệm phân biệt với mọi m
3) Theo hệ thức Vi-et có
\(x_1+x_2=\frac{-b}{a}=\frac{2\left(m+1\right)}{1}=2m+2\)
\(x_1.x_2=\frac{c}{a}=\frac{m-4}{1}=m-4\)
a,Ta có: \(A=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\)
\(=x_1-x_1x_2+x_2-x_1x_2\)
\(=\left(x_1+x_2\right)-2x_1x_2\)
\(=2m+2-2\left(m-4\right)\)
\(=2m+2-2m+8\)
\(=10\)ko phụ thuộc vào giá trị của m
b, Từ \(\hept{\begin{cases}x_1+x_2=2m+2\left(1\right)\\x_1+2x_2=3\end{cases}}\)
\(\Rightarrow\left(x_1+2x_2\right)-\left(x_1+x_2\right)=1-2m\)
\(\Rightarrow x_2=1-2m\)
Thế vào (1) ta đc \(x_1+1-2m=2m+2\)
\(\Leftrightarrow x_1=4m+1\)
Lại có: \(x_1x_2=m-4\)
\(\Leftrightarrow\left(4m+1\right)\left(1-2m\right)=m-4\)
\(\Leftrightarrow4m-8m^2+1-2m=m-4\)
\(\Leftrightarrow8m^2-m-5=0\)
\(\Delta=1-4.8.\left(-5\right)=161>0\)
Nên pt có 2 nghiệm phân biệt
\(m_1=\frac{1-\sqrt{161}}{16}\)
\(m_2=\frac{1+\sqrt{161}}{16}\)
c, \(x_1+x_2\ge10x_1x_2+6m-5\)
\(\Leftrightarrow2m+2\ge10\left(m-4\right)+6m-5\)
\(\Leftrightarrow2m+2\ge10m-40+6m-5\)
\(\Leftrightarrow47\ge14m\)
\(\Leftrightarrow m\le\frac{47}{14}\)
Vậy ............