Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái chỗ A = 2^2006 -a thì sửa thành A = 2^2006 -1 nhé ! .... mk gõ nhầm
C = 3 + 32 + 33 + ... + 32005
3C = 32 + 33 + 34 + ... + 32006
3C - C = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + ... + 32005)
2C = 32006 - 3
2C = 32004.32 - 3
2C = (34)501.9 - 3
2C = (...1)501.9 - 3
2C = (...1).9 - 3
2C = (...9) - 3
2C = (...6)
=> C có tận cùng là 3 hoặc 8
Mà C là tổng của 2005 số lẻ => C lẻ
=> C có tận cùng là 3
\(C=3+3^2+3^3+...+3^{2005}\)
=>\(3C=3^2+3^3+3^4+...+3^{2006}\)
=>\(3C-C=\left(3^2+3^3+3^4+...+3^{2006}\right)-\left(3+3^2+3^3+...+2^{2005}\right)\)
=>\(2C=3^{2006}-3\)
=>\(C=\frac{3^{2006}-3}{2}\)
\(C=\frac{3^{2006}-3}{2}=\frac{\left(3^2\right)^{1003}-3}{2}=\frac{9^{1003}-3}{2}=\frac{\left(...9\right)-3}{2}=\frac{\left(...6\right)}{2}=\left(...3\right)\)
Vậy C có tận cùng là 3
Chú ý: 9 mũ lẻ có tận cùng là 9
3.
Ta có :
A = 999999999982
= (99999999998 + 2)(99999999998 - 2) + 4
= 100 000 000 000 x 99999999996 + 4
= 99999999996000000000004
Từ đó ta có tổng các chữ số của A là
9 x 10 + 6 + 4 = 100.
tick đúg cho mình nha
1.
do tích các số lẻ có tận cùng là 7 nên trong các số đó, không có số nào tận cùng bằng 5
vậy nó có thể tận cùng bằng 3,1,7,9
mà đó là tích các số lẻ liên tiếp nên tích đó có thể có 3(tận cùng bằng 9,3,1 ), hoặc 4 ( tận cùng bằng 1,3,7,9)
tích trên không thể có 2 thừa số vì nếu có 2 thừa số thì chúng phải tận cùng băng 9,3 hoặc 1,7. mà các số tận cùng như trên không phải là các số lẻ liên tiếp
Các chữ số có tận cùng là a khi lũy thừa bậc 4k + 1 thì chữ số tận cùng không thay đổi.
Nên A có chữ số tận cùng là chữ số tận cùng của tổng sau:
\(1+2+3+...+18=\frac{18\cdot19}{2}=9\cdot19=\left(...1\right)\\ \)
Vậy A có tận cùng là chữ số 1.
Cách 1: Ta chỉ cần xét chữ số tận cùng của nhóm \(\overline{...1}^2+\overline{...2}^2+\overline{...3}^2+...+\overline{...0}^2\):
\(\overline{...1}+\overline{...4}+\overline{...9}+\overline{...6}+\overline{...5}+\overline{...6}+\overline{...9}+\overline{...4}+\overline{...1}+\overline{...0}=\overline{...5}\)
Có 10 nhóm như vậy nên tận cùng tổng trên là chữ số 0.
Cách 2: Ta có công thức tổng quát : \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
nên tổng trên bằng \(\frac{100.101.201}{6}=338350\) có tận cùng là chữ số 0.
\(A=1^2+2^2+3^2+...+100^2\)
\(A=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+100\left(101-1\right)\)
\(A=1.2-1+2.3-2+3.4-3+...+100.101-100\)
\(A=\left(1.2+2.3+3.4+...+100.101\right)-\left(1+2+3+...+100\right)\)
\(A=\frac{100.101.102}{3}-\frac{100.101}{2}\)
A=100.101.34-50.101
A=343400-5050
A=338350
Vậy A có tận cùng là )
B= 3+32+33+34+35+....+32009
=>3B=32+33+34+35+....+32010
=>3B-B=32+33+34+35+....+32010-3-32-33-34-35-...-32009
=>2B=32010-3
=>B=3^2010−3/2
có tận cùng là 23
A = 20 + 21 + 22 + ... + 22005
2A = 21 + 22 + 23 + ... + 22006
2A - A = (21 + 22 + 23 + ... + 22006) - (20 + 21 + 22 + ... + 22005)
A = 22006 - 20
A = 22006 - 1
A = 22004.22 - 1
A = (24)501.4 - 1
A = (...6)501.4 - 1
A = (...6).4 - 1
A = (...4) - 1
A = (...3)
\(A=2^0+2^1+2^2+...+2^{2005}\)
=>\(2A=2+2^2+2^3+...+2^{2006}\)
=>\(2A-A=\left(2+2^2+2^3+...+2^{2006}\right)-\left(2^0+2+2^2+...+2^{2005}\right)\)
=>\(A=2^{2006}-1\)
A=22006-1=(22)1003-1=41003-1=...4-1=...3 (chỗ này lưu ý: 4 mũ lẻ thì có tận cùng là 4)
Vậy A có tận cùng là 3