Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Miu Ti làm vớ vẩn
a)Từ \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
\(\Rightarrow\frac{3x^2}{27}=\frac{2y^2}{32}=\frac{5z^2}{125}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{3x^2}{27}=\frac{2y^2}{32}=\frac{5z^2}{125}=\frac{5z^2-3x^2-2y^2}{125-27-32}=\frac{594}{66}=9\)
\(\)\(\Rightarrow3x^2=9.27=243\Rightarrow x^2=\frac{243}{3}=81\Rightarrow x\in\left\{9;-9\right\}\)
\(2y^2=9.32=288\Rightarrow y^2=\frac{288}{2}=144\Rightarrow y\in\left\{12;-12\right\}\)
\(5z^2=9.125=1125\Rightarrow z^2=\frac{1125}{5}=225\Rightarrow z\in\left\{15;-15\right\}\)
Vậy..............
b)Từ \(x+y=3\left(x-y\right)\Rightarrow3x-3y=x+y\Rightarrow3x-x=y+3y\Rightarrow2x=4y\)
\(\Rightarrow2x=2.2y\Rightarrow x=2y\Rightarrow\frac{x}{y}=2\)
Mà \(x+y=\frac{x}{y}\) (theo đề)
\(\Rightarrow x+y=2\Rightarrow2y+y=2\Rightarrow3y=2\Rightarrow y=\frac{2}{3}\)
khi đó \(x=2y=2.\frac{2}{3}=\frac{4}{3}\)
Vậy x=4/3;y=2/3
a/ Ta có x:y:z=3:4:5
=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5\cdot z^2-3\cdot x^2-2\cdot y^2}{5\cdot5^2-3.3^2-2\cdot4^2}=\frac{594}{66}=9\)
=> x=9.3=27
y=9*4=36
z=9*5=45
b/ Từ từ rồi tui làm
đừng nên dựa vào trang này quá
bài trên thuộc dạng SGK , SBT mà không làm được à
\(x:y:z=3:4:5\Leftrightarrow x=3k;y=4k;z=5k\)
\(2x^2+2y^2-3z^2=2.\left(3k\right)^2+2.\left(4k\right)^2-3.\left(5k\right)^2=18k^2+32k^2-75k^2=100\)
\(\Leftrightarrow-25k^2=-100\Leftrightarrow k^2=4\Leftrightarrow k=2\Rightarrow x=6;y=8;z=10\)
Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(2x^2+2y^2-3z^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau ; ta được :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{?}{-25}\)
Đề thiếu rồi bạn
Ta có x : y : z = 3 : 4 : 5
<=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\Leftrightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Khi đó 2x2 + 2y2 - 3z2 = -100
<=> 2.(3k)2 + 2.(4k)2 - 3.(5k)2 = -100
<=> 18k2 + 32k2 - 75k2 = -100
<=> -25k2 = -100
<=> k2 = 4
<=> k = \(\pm2\)
Khi k = 2 => x = 6 ; y = 8 ; z = 10
Khi k = -2 => x = -6 ; y = -8 ; z = - 10
Vậy các cặp (x;y;z) thỏa mãn là (6;8;10);(-6;-8;-10)
b) 4x = 7y và \(x^2+y^2=260\)
Ta có: \(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\)
Đặt \(\frac{x}{7}=\frac{y}{4}=k\Rightarrow x=7k;\)\(y=4k\)
\(x^2+y^2=49k^2+16k^2=65k^2=260\)
\(\Rightarrow k^2=4\Rightarrow k=+-2\)
Với k = 2 thì: \(\frac{x}{7}=2\Rightarrow x=7.2=14\)
\(\frac{y}{4}=2\Rightarrow y=4.2=8\)
Với k = (-2) thì: \(\frac{x}{7}=-2\Rightarrow x=7.\left(-2\right)=-14\)
\(\frac{y}{4}=-2\Rightarrow x=4.\left(-2\right)=-8\)
Kết luận : \(x=+-14\)
\(y=+-8\)
câu 1:Theo đề ta có: \(\frac{x}{2}=\frac{y}{4}\) và x2.y2= 64
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{4}\)<=> \(\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{x^2}{4}=\frac{y^2}{16}\)
Đặt \(\frac{x^2}{4}=\frac{y^2}{16}=k\)
=> x2 =4k
y2= 16k
thay vào : x2.y2= 64
Ta có: 4k.16k= 64
64.k2 = 64
=> k = -1 ; 1
=> x2= 4.k => x2= -4; 4=> x= 2;-2
tương tự tìm y
\(x:y:z=4:5:6\\ \Leftrightarrow\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{z}{6}=k\\ \Rightarrow\left\{{}\begin{matrix}x=4k\\y=5k\\z=6k\end{matrix}\right.\\ x^2-2y^2+z^2=18\\ \Leftrightarrow\left(4k\right)^2-2\left(5k\right)^2+\left(6k\right)^2=18\\ \Leftrightarrow16k^2-50k^2+36k^2=18\\ \Leftrightarrow2k^2=18\\ \Leftrightarrow k^2=9\\ \Leftrightarrow\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\\ k=3\Rightarrow\left\{{}\begin{matrix}x=4k=4\cdot3=12\\y=5k=5\cdot3=15\\z=6k=6\cdot3=18\end{matrix}\right.\\ k=-3\Rightarrow\left\{{}\begin{matrix}x=4k=4\cdot\left(-3\right)=-12\\y=5k=5\cdot\left(-3\right)=-15\\z=6k=6\cdot\left(-3\right)=-18\end{matrix}\right.\)
Vậy ...
cảm ơn cậu đã giúp chúng tớ làm bài này