Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x : y : z = 3 : 4 : 5
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Mà 2x2 + 2y2 - 3z2 = -100
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
=> \(x^2=4.3=12\Rightarrow x=\sqrt{12}\)
\(y^2=4.4=16\Rightarrow x=4\)
\(z^2=4.5=20\Rightarrow z=\sqrt{20}\)
Vì x:y:z = 3:4:5
=>x/3=y/4=z/5
=>2x^2/2.3^2= 2.y^2/2.4^2=3.z^2/3.5^2
=>2.x^2/6^2=2.y^2/8^2=3.z^2/15^2
Áp dụng tính chất dãy Tỉ số = nhau. Ta có:
2.x^2+2y^2-3z^2/18+32-75= -100/-25= 4
=>x/3=4=>x= 12.
=>y/4=4=>y= 16.
=>z/5= 4=>z=20.
Vậy........
đừng nên dựa vào trang này quá
bài trên thuộc dạng SGK , SBT mà không làm được à
Lời giải:
Đặt $\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k$
$\Rightarrow x=3k; y=4k ; z=5k$.
Khi đó:
$2x^2+2y^2-3z^2=-100$
$\Rightarrow 2(3k)^2+2(4k)^2-3(5k)^2=-100$
$\Rightarrow -25k^2=-100$
$\Rightarrow k^2=4\Rightarrow k=2$ (do $x,y,z$ dương nên $k$ phải dương)
$\Rightarrow x=3k=12; y=4k=16; z=5k=20$
Lời giải:
Đặt $\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k$
$\Rightarrow x=3k; y=4k ; z=5k$.
Khi đó:
$2x^2+2y^2-3z^2=-100$
$\Rightarrow 2(3k)^2+2(4k)^2-3(5k)^2=-100$
$\Rightarrow -25k^2=-100$
$\Rightarrow k^2=4\Rightarrow k=2$ (do $x,y,z$ dương nên $k$ phải dương)
$\Rightarrow x=3k=12; y=4k=16; z=5k=20$
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20
Theo đề bài, ta có:
x:y:z=3:4:5 hay \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(2x^2+2y^2-3z^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x^2+2y^2-3.z^2}{2.3^2+2.4^2-3.5^2}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
- \(\frac{x}{3}=4.3=12\)
- \(\frac{y}{4}=4.4=16\)
- \(\frac{z}{5}=4.5=20\)
Vậy x=12,y=16,z=20.
(Bài làm có gì ko hiểu bạn cứ hỏi mk nhé ^_^)
\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
\(\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)\(=\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)
\(=\frac{2x^2+2y^2-3z^2}{18+32-75}=-\frac{100}{-25}=4\)(Theo tính chất dãy tỉ số bằng nhau)
\(\Rightarrow\hept{\begin{cases}x^2=36\\y^2=64\\z^2=100\end{cases}\Rightarrow\hept{\begin{cases}x=\pm6\\y=\pm8\\z=\pm10\end{cases}}}\)
Vì \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)nên x, y, z cùng dấu
\(\Rightarrow\hept{\begin{cases}x=-6\\y=-8\\z=-10\end{cases}}\)hoặc \(\hept{\begin{cases}x=6\\y=8\\z=10\end{cases}}\)
Ta có x : y : z = 3 : 4 : 5
<=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\Leftrightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Khi đó 2x2 + 2y2 - 3z2 = -100
<=> 2.(3k)2 + 2.(4k)2 - 3.(5k)2 = -100
<=> 18k2 + 32k2 - 75k2 = -100
<=> -25k2 = -100
<=> k2 = 4
<=> k = \(\pm2\)
Khi k = 2 => x = 6 ; y = 8 ; z = 10
Khi k = -2 => x = -6 ; y = -8 ; z = - 10
Vậy các cặp (x;y;z) thỏa mãn là (6;8;10);(-6;-8;-10)
đây nhé