Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x:y:z=3:4:5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)
\(\Leftrightarrow\frac{x}{3}=9\Rightarrow x=9.3=27\)
\(\Leftrightarrow\frac{y}{4}=9\Rightarrow y=9.4=36\)
\(\Leftrightarrow\frac{z}{5}=9\Rightarrow z=9.5=45\)
Vậy x = 27 ; y = 36 ; z = 45
\(x+y=3\left(x-y\right)\)
\(\Rightarrow x+y=3x-3y\)
\(\Rightarrow y+3y=3x-x\)
\(\Rightarrow4y=2x\)
\(\Rightarrow2y=x\)
\(\Rightarrow x:y=2\)
\(\Rightarrow x+y=2y+y=2\)
\(\Rightarrow3y=2\)
\(\Rightarrow y=\frac{2}{3}\)
\(\Rightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3};y=\frac{2}{3}\)
a: 3x=2y nên x/2=y/3
7y=5z nên y/5=z/7
=>x/10=y/15=z/21
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)
=>x=20; y=30; z=42
b: 2x=3y=5z
nên x/15=y/10=z/6
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
=>x=75; y=50; z=30
d: Đặt x/3=y/4=z/5=k
=>x=3k; y=4k; z=5k
2x^2+2y^2-3z^2=-100
=>18k^2+32k^2-3*25k^2=-100
=>25k^2=100
=>k^2=4
TH1: k=2
=>x=6; y=8; z=10
TH2: k=-2
=>x=-6; y=-8; z=-10
Chào Ngọc Bích :)
Ta có \(x:y:z=3:4:5\) nên \(\hept{\begin{cases}x=3t\\y=4t\\z=5t\end{cases}\Rightarrow5\left(5t\right)^2-3\left(3t\right)^2-2\left(4t\right)^2=594\Leftrightarrow125t^2-27t^2-32t^2=594}\)
\(\Leftrightarrow66t^2=594\Leftrightarrow t^2=9\Leftrightarrow t=3\) hoặc \(t=-3\)
Với t =3, ta tìm được \(\hept{\begin{cases}x=9\\y=12\\z=15\end{cases}}\)
Với t = -3, ta tìm được: \(\hept{\begin{cases}x=-9\\y=-12\\z=-15\end{cases}}\)
đừng nên dựa vào trang này quá
bài trên thuộc dạng SGK , SBT mà không làm được à
\(x:y:z=3:4:5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow x=3k;y=4k;z=5k\)
Khi đó:\(5z^2-3x^2-2y^2=594\) trở thành:
\(5\cdot25k^2-3\cdot9k^2-2\cdot16k^2=594\)
\(125k^2-27k^2-32k^2=594\)
\(66k^2=594\)
\(k^2=9\)
\(k=\pm3\)
Bạn thay vào rồi tính
b) 4x = 7y và \(x^2+y^2=260\)
Ta có: \(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\)
Đặt \(\frac{x}{7}=\frac{y}{4}=k\Rightarrow x=7k;\)\(y=4k\)
\(x^2+y^2=49k^2+16k^2=65k^2=260\)
\(\Rightarrow k^2=4\Rightarrow k=+-2\)
Với k = 2 thì: \(\frac{x}{7}=2\Rightarrow x=7.2=14\)
\(\frac{y}{4}=2\Rightarrow y=4.2=8\)
Với k = (-2) thì: \(\frac{x}{7}=-2\Rightarrow x=7.\left(-2\right)=-14\)
\(\frac{y}{4}=-2\Rightarrow x=4.\left(-2\right)=-8\)
Kết luận : \(x=+-14\)
\(y=+-8\)
câu 1:Theo đề ta có: \(\frac{x}{2}=\frac{y}{4}\) và x2.y2= 64
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{4}\)<=> \(\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{x^2}{4}=\frac{y^2}{16}\)
Đặt \(\frac{x^2}{4}=\frac{y^2}{16}=k\)
=> x2 =4k
y2= 16k
thay vào : x2.y2= 64
Ta có: 4k.16k= 64
64.k2 = 64
=> k = -1 ; 1
=> x2= 4.k => x2= -4; 4=> x= 2;-2
tương tự tìm y
Miu Ti làm vớ vẩn
a)Từ \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
\(\Rightarrow\frac{3x^2}{27}=\frac{2y^2}{32}=\frac{5z^2}{125}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{3x^2}{27}=\frac{2y^2}{32}=\frac{5z^2}{125}=\frac{5z^2-3x^2-2y^2}{125-27-32}=\frac{594}{66}=9\)
\(\)\(\Rightarrow3x^2=9.27=243\Rightarrow x^2=\frac{243}{3}=81\Rightarrow x\in\left\{9;-9\right\}\)
\(2y^2=9.32=288\Rightarrow y^2=\frac{288}{2}=144\Rightarrow y\in\left\{12;-12\right\}\)
\(5z^2=9.125=1125\Rightarrow z^2=\frac{1125}{5}=225\Rightarrow z\in\left\{15;-15\right\}\)
Vậy..............
b)Từ \(x+y=3\left(x-y\right)\Rightarrow3x-3y=x+y\Rightarrow3x-x=y+3y\Rightarrow2x=4y\)
\(\Rightarrow2x=2.2y\Rightarrow x=2y\Rightarrow\frac{x}{y}=2\)
Mà \(x+y=\frac{x}{y}\) (theo đề)
\(\Rightarrow x+y=2\Rightarrow2y+y=2\Rightarrow3y=2\Rightarrow y=\frac{2}{3}\)
khi đó \(x=2y=2.\frac{2}{3}=\frac{4}{3}\)
Vậy x=4/3;y=2/3
a/ Ta có x:y:z=3:4:5
=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5\cdot z^2-3\cdot x^2-2\cdot y^2}{5\cdot5^2-3.3^2-2\cdot4^2}=\frac{594}{66}=9\)
=> x=9.3=27
y=9*4=36
z=9*5=45
b/ Từ từ rồi tui làm