K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2015

Từ đề bài ta có : 1000=abc.(a+b+c)

Ta phân tích 1000 ra làm tích 2 số trong đó 1 số là số tự nhiên có  3 chữ số 

1000=125.8=200.5=100.10=500.2=250.4

Trong các số trên chỉ có 1 số thỏa mãn tổng các chữ số của nó nhân với nó bằng 1000, đó là số 125.

Suy ra abc=125 ( bài này chỉ đúng khi abc có dấu gạch ở trên ko phải a.b.c)

21 tháng 2 2017

với a,b,c>0

áp dung bđt \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)( bđt svacxo) ta có :

A=\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)\(=\frac{a+b+c}{2}=\frac{2016}{2}=1008\)

=> min A=1008 dấu bằng xảy ra <=>a=b=c=672 

2 tháng 4 2017

Đặt \(x=a;y=\frac{b}{2};z=\frac{c}{3}\left(x,y,z>0\right)\) và\(x+y+z=xyz\)

Khi đó ta có: \(B=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\)

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\frac{1}{\sqrt{x^2+1}}=\sqrt{\frac{xyz}{x^2\left(x+y+z\right)+xyz}}\le\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}\le\frac{y}{2\left(x+y\right)}+\frac{z}{2\left(x+z\right)}\)

Tương tự có: \(\frac{1}{\sqrt{1+y^2}}\le\frac{x}{2\left(x+y\right)}+\frac{z}{2\left(y+z\right)};\frac{1}{\sqrt{1+z^2}}\le\frac{x}{2\left(x+z\right)}+\frac{y}{2\left(y+z\right)}\)

\(\Rightarrow B\le\frac{x+y}{2\left(x+y\right)}+\frac{x+z}{2\left(x+z\right)}+\frac{y+z}{2\left(y+z\right)}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\Rightarrow\hept{\begin{cases}a=\sqrt{3}\\b=2\sqrt{3}\\c=3\sqrt{3}\end{cases}}\)

15 tháng 4 2017

c.ơn thắng nguyễn nhiu nha

31 tháng 7 2019

a, b, c > 0 mà sao abc = 0 được vậy nhỉ:))

31 tháng 7 2019

#)Góp ý :

Nguyễn Khang chuẩn :v

Rõ bảo mong k muốn ai thấy nick này mak cứ ló mặt ra lm chi ???

Lấy nick tth_new có ph nhanh hơn k ^^

4 tháng 3 2018

Đề phải là cho 1/a + 1/b + 1/c < = 1

Áp dụng tính chấ : 1/x+y < = 1/4.(1/x+1/y) thì :

A < = 1/4.(1/a+1/b+1/b+1/c+1/c+1/a)

      = 1/2.(1/a+1/b+1/c)

   < = 1/2 . 1 = 1/2

Dấu "=" xảy ra <=> a=b=c=3

Vậy .............

Tk mk nha

30 tháng 9 2018

MÀY vào câu hỏi tương tự .

Tao không rảnh

Ok?

30 tháng 9 2018

deo lm dc ns me di can may binh luan ak

4 tháng 3 2018

Áp dụng tính chất : xy < = (x+y)^2/4 thì : 

D < = (a+b)^2/4.(a+b) + (b+c)^2/4.(b+c) + (c+a)^2/4.(c+a)

       = a+b/4 + b+c/4 + c+a/4

       = a+b+b+c+c+a/4

       = a+b+c/2

       = 1/2

Dấu "=" xảy ra <=> a=b=c=1/3

Vậy .............

Tk mk nha

10 tháng 3 2019

\(P=\frac{a^2+1}{a}+\frac{b^2+1}{b}+\frac{c^2+1}{c}=a+\frac{1}{a}+b+\frac{1}{b}+c+\frac{1}{c}\ge2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{1}{b}}+2\sqrt{c.\frac{1}{c}}=6\)

Dấu " =" xảy ra : \(a=b=c=1\)

\(\Rightarrow P_{Min}=6\Leftrightarrow a=b=c=1\)

P/s : a,b,c > 0

10 tháng 3 2019

cái này có thêm điều kiện là a≥2, b≥3, c≥4 thì làm sao bạn??

9 tháng 4 2019

Áp dụng bđt cosi ta có:

\(M=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}=\frac{1}{a^2+b^2+b^2+1+2}+\frac{1}{b^2+c^2+c^2+1+2}+\frac{1}{c^2+a^2+a^2+1+2}\le\frac{1}{2\sqrt{ab}+2\sqrt{b}+2}+\frac{1}{2\sqrt{bc}+2\sqrt{c}+2}+\frac{1}{2\sqrt{ac}+2\sqrt{a}+2}=\frac{1}{2}\left(\frac{1}{\sqrt{ab}+\sqrt{b}+1}+\frac{1}{\sqrt{bc}+\sqrt{c}+1}+\frac{1}{\sqrt{ac}+\sqrt{a}+1}\right)=\frac{1}{2}\left(\frac{1}{\sqrt{ab}+\sqrt{b}+1}+\frac{\sqrt{abc}}{\sqrt{bc}+\sqrt{c}+\sqrt{abc}}+\frac{\sqrt{b}}{\sqrt{abc}+\sqrt{ab}+\sqrt{b}}\right)=\frac{1}{2}\left(\frac{1}{\sqrt{ab}+\sqrt{b}+1}+\frac{\sqrt{ab}}{\sqrt{b}+1+\sqrt{ab}}+\frac{\sqrt{b}}{1+\sqrt{ab}+\sqrt{b}}\right)=\frac{1}{2}\left(\frac{1+\sqrt{ab}+\sqrt{b}}{\sqrt{ab}+\sqrt{b}+1}\right)=\frac{1}{2}\Rightarrow M\le\frac{1}{2}\)

Vậy GTLN của M là \(\frac{1}{2}\)

NV
9 tháng 4 2019

\(M=\sum\frac{1}{a^2+b^2+b^2+1+2}\le\frac{1}{2}\sum\frac{1}{ab+b+1}\)

Maặt khác, ta có bài toán quen thuộc, cho \(abc=1\Rightarrow\sum\frac{1}{ab+b+1}=1\)

\(\Rightarrow M\le\frac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=1\)