Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt bu nhi a, ta có
\(P^2\le3\left(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\right)\)
Áp dụng bđt cô si, ta có
\(a^2+b^2\ge2ab;b^2+1\ge2b\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)
tương tự với mấy cái kia =>\(P^2\le\frac{3}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+a}+\frac{1}{ca+a+1}\right)\)
mà với abc =1, thì bạn sẽ chứng minh được \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\)
phân thức thứ 1 để nguyê, phân thức thứ 2 nhân với ab, phân thức thứ 3 nhân với b, rồi chỗ napf có abc thì thay abc=1
thì bạn sẽ chứng minh được cái kia=1
=>\(P\le\sqrt{\frac{3}{2}}\)
dâu = xảy ra <=>a=b=c=1
Dễ thấy theo AM - GM :
\(\frac{1}{\sqrt{a^2+2b^2+3}}=\frac{1}{\sqrt{\left(a^2+b\right)+\left(b^2+1\right)+2}}\le\frac{1}{\sqrt{2ab+2b+2}}\)
\(\le\frac{\sqrt{6}}{4}\left(\frac{1}{ab+b+1}+\frac{1}{3}\right)\)
Tương tự:
\(\frac{1}{\sqrt{b^2+2c^2+3}}\le\frac{\sqrt{6}}{4}\left(\frac{1}{bc+c+1}+\frac{1}{3}\right);\frac{1}{\sqrt{c^2+2a^2+3}}\le\frac{\sqrt{6}}{4}\left(\frac{1}{ca+a^2+1}+\frac{1}{3}\right)\)
Cộng lại ta sẽ có đpcm
Vì dễ thấy \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\) với abc=1
\(a^2+2b^2+3=a^2+b^2+b^2+1+2\ge2ab+2b+2\)
\(\Rightarrow VT\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)=\frac{1}{2}\)
(Đẳng thức quen thuộc \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\) khi \(abc=1\) bạn tự chứng minh, mất khoảng 2 dòng)
Bài 1:
\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)
Cộng theo vế 3 BĐT trên ta có:
\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Đẳng thức xảy ra khi \(a=b=c\)
Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2
Bài 2/
\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)
\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)
\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=1\)
\(S\le\frac{a}{2a+2b+2c}+\frac{b}{2a+2b+2c}+\frac{c}{2a+2b+2c}=\frac{1}{2}\)
\(S_{max}=\frac{1}{2}\) khi \(a=b=c=1\)
+ \(\frac{1}{a^2+2b^2+3}=\frac{1}{\left(a^2+b^2\right)+\left(b^2+1\right)+2}\le\frac{1}{2\left(ab+b+1\right)}\) . Dấu "=" \(\Leftrightarrow a=b=1\)
+ Tương tự : \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\). Dấu "=" \(\Leftrightarrow b=c=1\)
\(\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ca+a+1\right)}\). Dấu "=" \(c=a=1\)
Do đó : \(VT\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{abc\cdot b+abc+ab}+\frac{b}{abc+ab+b}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab+b+1}+\frac{b}{ab+b+1}\right)=\frac{1}{2}\)
Dấu "=" \(\Leftrightarrow a=b=c=1\)
4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)
\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)
\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)
Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)
Đẳng thức xảy ra khi ...(anh giải nốt ạ)
@Cool Kid:
Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)
Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)
Áp dụng Bunhia cho bộ số (1;1;1) vfa (a;b;c) ta có 3(a2+b2+c2) >= (a+b+c)2
=> 3(2a2+b2) >=(2a+b2); 3(2b2+c2) >= (2b+c)2; 3(2c2+a2) >= (2c+a)2
=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
Ta có \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Rightarrow\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x+y+z}\)
=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+b}\le\frac{1}{9}\left[\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\right]\)
=> \(P\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(I\right)\)
Ta có \(10\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2015\)
\(=3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+2015\left(II\right)\)
Áp dụng Bunhia cho bộ số (1;1;1) và \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\)
Ta được \(3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)\(\Rightarrow\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
=> \(10\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge10\cdot\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\left(III\right)\)
Từ (I)(II)(III) => \(3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+2015\ge10\cdot\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le3\cdot2015\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\sqrt{3\cdot2015}\left(IV\right)\)
Từ (I)(IV) => \(P\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}\cdot\sqrt{3\cdot2015}=\sqrt{\frac{2015}{3}}\)
Vậy GTNN của P=\(\sqrt{\frac{2015}{3}}\)khi a=b=c và \(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2015\)
=> \(a=b=c=\sqrt{\frac{3}{2015}}\)
Áp dụng bđt cosi ta có:
\(M=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}=\frac{1}{a^2+b^2+b^2+1+2}+\frac{1}{b^2+c^2+c^2+1+2}+\frac{1}{c^2+a^2+a^2+1+2}\le\frac{1}{2\sqrt{ab}+2\sqrt{b}+2}+\frac{1}{2\sqrt{bc}+2\sqrt{c}+2}+\frac{1}{2\sqrt{ac}+2\sqrt{a}+2}=\frac{1}{2}\left(\frac{1}{\sqrt{ab}+\sqrt{b}+1}+\frac{1}{\sqrt{bc}+\sqrt{c}+1}+\frac{1}{\sqrt{ac}+\sqrt{a}+1}\right)=\frac{1}{2}\left(\frac{1}{\sqrt{ab}+\sqrt{b}+1}+\frac{\sqrt{abc}}{\sqrt{bc}+\sqrt{c}+\sqrt{abc}}+\frac{\sqrt{b}}{\sqrt{abc}+\sqrt{ab}+\sqrt{b}}\right)=\frac{1}{2}\left(\frac{1}{\sqrt{ab}+\sqrt{b}+1}+\frac{\sqrt{ab}}{\sqrt{b}+1+\sqrt{ab}}+\frac{\sqrt{b}}{1+\sqrt{ab}+\sqrt{b}}\right)=\frac{1}{2}\left(\frac{1+\sqrt{ab}+\sqrt{b}}{\sqrt{ab}+\sqrt{b}+1}\right)=\frac{1}{2}\Rightarrow M\le\frac{1}{2}\)
Vậy GTLN của M là \(\frac{1}{2}\)
\(M=\sum\frac{1}{a^2+b^2+b^2+1+2}\le\frac{1}{2}\sum\frac{1}{ab+b+1}\)
Maặt khác, ta có bài toán quen thuộc, cho \(abc=1\Rightarrow\sum\frac{1}{ab+b+1}=1\)
\(\Rightarrow M\le\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=1\)