K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1      cho 3 so thuc duong thoa man x^2010+y^2010+z^2010=3  tim gia tri lon nhat cua x^2+y^2+z^22     cho a;b;c duong c/m    \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>hoac=3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)3      tim gia tri nho nhat cua \(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\) voi a+b+c=14      cho a;b;c;d va A;B;C;D la cac so duong thoa man \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)C/ M...
Đọc tiếp

1      cho 3 so thuc duong thoa man x^2010+y^2010+z^2010=3  tim gia tri lon nhat cua x^2+y^2+z^2

2     cho a;b;c duong c/m    \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>hoac=3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

3      tim gia tri nho nhat cua \(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\) voi a+b+c=1

4      cho a;b;c;d va A;B;C;D la cac so duong thoa man \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)C/ M   \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)

5    tim gia tri lon nhat cua  \(\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)

6     phan tich da thuc thanh nhan tu   \(y-5x\sqrt{y}+6x^2\)

7    cho x;y;z>0   xy+yz+xz=1   tinh \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)

8    cho a;b;c >0 c/m   \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\)

9   rut gon     \(\sqrt{4+\sqrt{5\sqrt{3+\sqrt{5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}}}\)

10   tim gia tri lon nhat cua \(\sqrt{x-2}+\sqrt{4-x}\)

11 cho a>b>c>o c/m   \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}-\sqrt{ab}<=0\)

12   cho  \(\left(x+\sqrt{x^2+2006}\right)\left(y+\sqrt{y^2+2006}\right)=2006\) tinh x+y

 

11
14 tháng 7 2015

pn oi nhieu the nay ai ma giai cho het dc

bài lớp mấy mà nhìn ghê quá zật bạn..................Nhìu quá

28 tháng 10 2019

5/ĐK: \(\left[{}\begin{matrix}x\le-1\\x\ge5\end{matrix}\right.\)

PT \(\Leftrightarrow2\left(x^2-4x-6\right)+\sqrt{x^2-4x-5}-1=0\)

\(\Leftrightarrow\left(x^2-4x-6\right)\left(2+\frac{1}{\sqrt{x^2-4x-5}+1}\right)=0\)

\(\Leftrightarrow x^2-4x-6=0\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{10}\\x=2-\sqrt{10}\end{matrix}\right.\)

Vậy..

28 tháng 10 2019

Câu 2 a chắc là bình phương hai vế lên,đặt ẩn phụ rồi... chăng?

16 tháng 10 2017

Câu 1) a) ĐKXĐ \(x\ge0,\)\(x\ne4\)A=\(\frac{x+2\sqrt{x}-4}{2\left(x-4\right)}\)b) Mình chưa làm được       Câu 2) a) ĐKXĐ \(x>0,\)\(x\ne4\)A=\(\frac{\sqrt{x}-1}{\sqrt{x}}\)b) Để a<\(\frac{1}{2}\)\(\Rightarrow\)\(\frac{\sqrt{x}-1}{\sqrt{x}}< \frac{1}{2}\)\(\Rightarrow x< 1\)\(\Rightarrow0< x< 1\)thỏa mãn bài toán    c) Ta có A=\(\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}\), để A \(\in Z\)\(\Rightarrow\sqrt{x}\inƯ\left(1\right)\)\(\Rightarrow x=1\)( thỏa mãn ĐK)

10 tháng 8 2018

như lồn

NV
11 tháng 11 2019

Câu 1:

a/ Biểu thức không tồn tại GTNN.

Bạn cứ thử với vài giá trị âm có trị tuyệt đối lớn, ví dụ \(a=-10^3\)\(b=-\frac{1}{10^3}\) sẽ thấy

b/

\(x^3+3x^2+3x+1+y^3+3y^2+3y+1+x+y+2=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+x+y+2=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)\right]+x+y+2=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1-\frac{y+1}{2}\right)^2+\frac{3\left(y+1\right)^2}{4}+1\right]=0\)

\(\Rightarrow x+y=-2\Rightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\)

\(\Rightarrow-x+\left(-y\right)=2\)

\(M=\frac{1}{x}+\frac{1}{y}=-\left(\frac{1}{-x}+\frac{1}{-y}\right)\le-\frac{4}{-x+\left(-y\right)}=-\frac{4}{2}=-2\)

\(\Rightarrow M_{max}=-2\) khi \(x=y=-1\)

NV
11 tháng 11 2019

1c/

\(T=\sum\frac{a}{2a+a+b+c}=\frac{1}{25}\sum\frac{a\left(2+3\right)^2}{2a+a+b+c}\le\frac{1}{25}\sum\left(\frac{4a}{2a}+\frac{9a}{a+b+c}\right)\)

\(\Rightarrow T\le\frac{1}{25}\left(6+\frac{9\left(a+b+c\right)}{a+b+c}\right)=\frac{15}{25}=\frac{3}{5}\)

Dấu "=" xảy ra khi \(a=b=c\)

1) Cho x > 1. Tìm GTNN của:   ​\(A=\frac{1+x^4}{x\left(x-1\right)\left(x+1\right)}\)2) Trong các cặp (x;y) thỏa mãn \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\). Tìm cặp có tổng x + 2y lớn nhất.3) Cho x thỏa mãn \(x^2+\left(3-x\right)^2\ge5\). Tìm GTNN của \(A=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)4) Tìm GTNN của \(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)5) Cho x, y > 1....
Đọc tiếp

1) Cho x > 1. Tìm GTNN của:   ​\(A=\frac{1+x^4}{x\left(x-1\right)\left(x+1\right)}\)

2) Trong các cặp (x;y) thỏa mãn \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\). Tìm cặp có tổng x + 2y lớn nhất.

3) Cho x thỏa mãn \(x^2+\left(3-x\right)^2\ge5\). Tìm GTNN của \(A=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)

4) Tìm GTNN của \(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)

5) Cho x, y > 1. Tìm GTNN của \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)

6) Cho x, y, z > 0 thỏa mãn: \(xy^2z^2+x^2z+y=3z^2\). Tìm GTLN của \(P=\frac{z^4}{1+z^4\left(x^4+y^4\right)}\)

7) Cho a, b, c > 0. CMR:\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

8) Cho x>y>0. và \(x^5+y^5=x-y\). CMR: \(x^4+y^4<1\)

9) Cho \(1\le a,b,c\le2\). CMR: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)

10) Cho \(x,y,z\ge0\)CMR: \(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\le\sqrt[3]{\frac{x+y}{2}}+\sqrt[3]{\frac{y+z}{2}}+\sqrt[3]{\frac{z+x}{2}}\)

11) Cho \(x,y\ge0\)thỏa mãn \(x^2+y^2=1\)CMR: \(\frac{1}{\sqrt{2}}\le x^3+y^3\le1\)

12) Cho a,b,c > 0 và a + b + c = 12. CM: \(\sqrt{3a+2\sqrt{a}+1}+\sqrt{3b+2\sqrt{b}+1}+\sqrt{3c+2\sqrt{c}+1}\le3\sqrt{17}\)

13) Cho x,y,z < 0 thỏa mãn \(x+y+z\le\frac{3}{2}\). CMR: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge3\sqrt{17}\)

14) Cho a,b > 0. CMR: \(\left(\sqrt[6]{a}+\sqrt[6]{b}\right)\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\le4\left(a+b\right)\)

15) Với a, b, c > 0. CMR: \(\frac{a^8+b^8+c^8}{a^3.b^3.c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

16) Cho x, y, z > 0 và \(x^3+y^3+z^3=1\)CMR: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\)

3
20 tháng 1 2016

cậu đăng mỗi lần 1 đến 2 câu thôi chứ nhiều thế này ai làm cho hết được

20 tháng 1 2016

Ok lần đầu mình đăng nên chưa biết, cảm ơn cậu đã góp ý, mình sẽ rút kinh nghiệm!!

1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\) b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\) c) \(x,y,z>0.\) Min...
Đọc tiếp

1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\)

b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)

c) \(x,y,z>0.\) Min \(P=\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}+\sqrt{\frac{y^3}{y^3+\left(z+x\right)^3}}+\sqrt{\frac{z^3}{z^3+\left(x+y\right)^3}}\)

d) \(a,b,c>0;a^2+b^2+c^2+abc=4.Cmr:2a+b+c\le\frac{9}{2}\)

e) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{2}\)

f) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=4\end{matrix}\right.\) Cmr: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\)

g) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=2\end{matrix}\right.\) Max : \(Q=\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)

3
26 tháng 4 2020

Câu 1 chuyên phan bội châu

câu c hà nội

câu g khoa học tự nhiên

câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ

câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)

Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !

25 tháng 4 2020

Câu c quen thuộc, chém trước:

Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)

Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)

Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)

\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)

Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)

\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)

Done.

21 tháng 10 2017

bài 2

ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)

\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)

Áp dụng bất đẳng thức Bunhiacopxki ta có;

\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)

\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)

\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)

Dấu \(=\)xảy ra khi \(a=b=c=1\)

21 tháng 10 2017

câu 1 dễ mà liên hợp đi x=\(\frac{4}{5}\)

AH
Akai Haruma
Giáo viên
6 tháng 10 2019

Bài 1a:

Ta thấy vế trái là số tự nhiên với mọi $x,y\in\mathbb{N}^*$. Do đó $\sqrt{9x^2+16x+32}\in\mathbb{N}^*$

Điều này xảy ra khi \(9x^2+16x+32\) là số chính phương.

Đặt \(9x^2+16x+32=t^2(t\in\mathbb{N}^*)\)

\(\Leftrightarrow 81x^2+144x+288=9t^2\)

\(\Leftrightarrow (9x+8)^2+224=(3t)^2\Leftrightarrow (3t-9x-8)(3t+9x+8)=224\)

Hiển nhiên $3t+9x+8>0; 3t+9x+8>3t-9x-8$ với mọi $x,t\in\mathbb{N}^*$ và $3t+9x+8; 3t-9x-8$ cùng tính chẵn lẻ.

Do đó \((3t+9x+8; 3t-9x-8)=(16;14); (28;8); (56;4); (112;2)\)

Thử các TH trên ta thu được $x=2$ là kết quả duy nhất thỏa mãn

Thay vào PT ban đầu suy ra $y=\frac{-7}{4}$ (vô lý)

Do đó không tồn tại $x,y$ thỏa mãn.

AH
Akai Haruma
Giáo viên
6 tháng 10 2019

Bài 1b:

ĐKXĐ: \(x\geq \frac{-1}{3}\)

PT \(\Leftrightarrow 4x^3+5x^2+3x+1-\sqrt{3x+1}=0\)

\(\Leftrightarrow 4x^3+5x^2+3x-\frac{3x}{\sqrt{3x+1}+1}=0\)

\(\Leftrightarrow x\left(4x^2+5x+3-\frac{3}{\sqrt{3x+1}+1}\right)=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ 4x^2+5x+3-\frac{3}{\sqrt{3x+1}+1}=0(*)\end{matrix}\right.\)

Xét $(*)$

\(\Leftrightarrow 4x^2+x+4x+1+2-\frac{3}{\sqrt{3x+1}+1}=0\)

\(\Leftrightarrow x(4x+1)+(4x+1)+\frac{2\sqrt{3x+1}-1}{\sqrt{3x+1}+1}=0\)

\(\Leftrightarrow (4x+1)(x+1)+\frac{3(4x+1)}{(\sqrt{3x+1}+1)(2\sqrt{3x+1}+1)}=0\)

\(\Leftrightarrow (4x+1)\left[(x+1)+\frac{3}{(\sqrt{3x+1}+1)(2\sqrt{3x+1}+1)}\right]=0\)

Với mọi $x\geq \frac{-1}{3}$ dễ thấy biểu thức trong ngoặc vuông luôn dương. Do đó $4x+1=0\Rightarrow x=\frac{-1}{4}$ (thử lại thấy t/m)

Vậy \(x=0\) hoặc \(x=-\frac{1}{4}\)