Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm m,n nguyên dương sao cho \(\left(\frac{1}{2}\right)^n-\left(\frac{1}{2}\right)^m=\frac{1}{512}\)
\(2^m-2^n=256=2^8=>2^n\left(2^{m-n}-1\right)=2^8\left(1\right)\)
vì m khác n ,nên ta có:
+)nếu m-n=1 thì từ (1) ta có 2^n(2-1)=2^8
=>n=8;m=9
+)nếu m-n>2 thì 2^m-n -1 là 1 số lẻ lớn hơn 1 ,do đó vế trái của (1) chứa thừa số nguyên tố lẻ khi phân tích ra thừa số nguyên tố,còn vế phải của (1) chỉ chứa thừa số nguyên tố 2.Mâu thuẫn
Vậy n=8;m=9 là đáp số duy nhất
ta có
2^m+2^n=2^m+n
2^m+n-2^m-2^n=0
2^m.2^n-2^m-2^n=0
2^m(2^n-1)-2^n=0
2^m(2^n-1)-2^n+1=1
2^m(2^n-1)-(2^n-1)=1
(2^n-1)(2^m-1)=1
ta có 1= 1.1=-1.(-1)
lập bảng và làm tiêp nhé, k cho mình nha
m+n ở số mũ nha.
??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
giả thiết m và n nguyên tố cùng nhau
nên ƯCLN(m;n)=1
Mà m^2chia hết cho n
Và n^2 chia hết cho m
m,n nguyên dương lẻ
nên m=n=1
Do đó m^2+n^2+2=4
4.m.n=4
Vậy ta được đpcm
vì m và n đều là số nguyên dương mà \(2^m-2^n=512\Rightarrow m>n\)
Đặt m=n+k( k>0,k thuộc Z+)
\(2^{n+k}-2^n=2^9\Rightarrow2^n.\left(2^k-1\right)=2^9\)
vì 2k-1 là số lẻ mà Ước của 29 chỉ có 1 là số lẻ => 2k-1=1=> 2k=2=> k=1
=> 2n=29 => n=9. m=1+9=10
Vậy n=9,m=10
\(2^m-2^n=512\)
\(\implies 2^m-2^n=2^9>0\)
\(\implies 2^m-2^n>0\)
\(\implies m>n\)
\(\implies 2^n(2^{m-n}-1)=2^9.1\)
Thấy \(2^{m-n}-1 \neq0\implies 2^{m-n}\neq1\implies m-n\neq0\)
\(\implies 2^{m-n}\vdots2\)
\(\implies 2^{m-n}-1\) chia 2 dư 1
\(\implies\)\(\hept{\begin{cases}2^n=2^9\\2^{m-n}-1=1\end{cases}\Rightarrow\hept{\begin{cases}n=9\\m-n=1\end{cases}\Rightarrow}\hept{\begin{cases}n=9\\m=10\end{cases}}}\)
Vậy n=9;m=10(tmđk)
_Học tốt_
\(2^m-2^n=512\)
\(\Rightarrow2^m-2^n=2^9\)
\(\Rightarrow m=10;n=9\)
\(2^m-2^n=512\Leftrightarrow2^m-2^n=2^9\Leftrightarrow2^m>2^n\Leftrightarrow m>n\)
\(TH1:m-n=1\)
\(\Rightarrow2^m-2^n=2^n\left(2^{m-n}+1\right)=2^9\Leftrightarrow2^n.\left(2-1\right)=2^9\)
\(\Leftrightarrow2^n=2^9\Leftrightarrow n=9\)\(\Rightarrow m=10\)
\(TH2:m-n>2\),\(2^n\left(2^{m-n}+1\right)=2^9\)
Vế trái có thừa số \(2^{m-n}+1\)lẻ (Vì m - n >2 nên \(2^{m-n}\)chẵn\(\Leftrightarrow2^{m-n}+1\)lẻ)
Vậy m = 10; n = 9
Ta có: \(2^m-2^n=2^8\)
\(2^n\left(2^{m-n}-1\right)=2^8\)
\(2^{m-n}-1=1\)
\(2^1-1=1\)
\(m-n=1\)
\(2^8\left(2^{9-8}-1\right)=2^8\)
\(\Rightarrow\)\(m=9\)
\(n=8\)