Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\frac{1}{3}\right)^n=\frac{1}{81}\)
\(\Rightarrow\left(\frac{1}{3}\right)^n=\frac{1^4}{3^4}\)
\(\Rightarrow\left(\frac{1}{3}\right)^n=\left(\frac{1}{3}\right)^4\)
\(\Rightarrow n=4\)
Vậy n = 4
b) \(\frac{-512}{343}=\left(\frac{-8}{7}\right)^n\)
\(\Rightarrow\frac{-8^3}{7^3}=\left(\frac{-8}{7}\right)^n\)
\(\Rightarrow\left(\frac{-8}{7}\right)^3=\left(\frac{-8}{7}\right)^n\)
\(\Rightarrow n=3\)
Vậy n = 3
Bài 1 :
Ta có :
\(\left(x-1\right)^6=\left(x-1\right)^8\)
\(\Leftrightarrow\)\(x-1=\left(x-1\right)^2\)
\(\Leftrightarrow\)\(\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(1-x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(2-x\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\2-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy \(x=1\) hoặc \(x=2\)
Pn=\(\frac{2}{3}\times\frac{5}{6}\times...\times\frac{\frac{\left(n+1\right)n}{2}-1}{\frac{\left(n+1\right)n}{2}}\)
= \(\frac{4}{6}\times\frac{10}{12}\times...\times\frac{n\left(n+1\right)-2}{n\left(n+1\right)}\)
= \(\frac{1\times4}{2\times3}\times\frac{2\times5}{3\times4}\times...\times\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
= \(\frac{1\times2\times...\times\left(n-1\right)}{2\times3\times...\times n}\times\frac{4\times5\times...\times\left(n+2\right)}{3\times4\times...\times\left(n+1\right)}\)
= \(\frac{1}{n}\times\frac{n+2}{3}\)
=\(\frac{n+2}{3n}\)
=> \(\frac{1}{Pn}\)=\(\frac{3n}{n+2}\)
Đến đây thì bạn tự giải tiếp nhé.
Chúc bạn học tốt!
\(1+2+...+n=\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
\(\Rightarrow P_n=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
\(P_n=\frac{1.2.3...\left(n-1\right)}{2.3.4...n}.\frac{4.5...\left(n+2\right)}{3.4...\left(n+1\right)}=\frac{n+2}{3n}\)
\(\Rightarrow\frac{1}{P_n}=\frac{3n}{n+2}=3-\frac{6}{n+2}\in Z\)
\(\Rightarrow n+2=Ư\left(6\right)=\left\{3;6\right\}\Rightarrow n=\left\{1;4\right\}\)
\(a,\left[\left(0,5\right)^3\right]^n=\frac{1}{64}\Rightarrow\left(0,125\right)^n=0,125^2\Rightarrow n=2\)
\(b,\frac{64}{\left(-2\right)^{n+1}}=4\Rightarrow\left(-2\right)^{n+1}=\frac{64}{4}\Rightarrow\left(-2\right)^{n+1}=16\Rightarrow\left(-2\right)^{n+1}=\left(-2\right)^4\)
\(\Rightarrow n+1=4\Rightarrow n=3\)
\(c,\left(\frac{1}{3}\right)^{n+1}=\frac{1}{81}\Rightarrow\left(\frac{1}{3}\right)^{n+1}=\left(\frac{1}{3}\right)^4\Rightarrow n+1=4\Rightarrow n=3\)
\(d,\left(\frac{3}{4}\right)^n.\frac{1}{2}=\frac{81}{512}\Rightarrow\left(\frac{3}{4}\right)^n=\frac{81}{512}:\frac{1}{2}=\frac{81}{256}\Rightarrow\left(\frac{3}{4}\right)^n=\left(\frac{3}{4}\right)^4\Rightarrow n=4\)
\(A=\left(1+\frac{1}{3}\right).\left(1+\frac{1}{8}\right).\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\)
\(A=\frac{3+1}{3}.\frac{8+1}{8}.\frac{15+1}{15}...\frac{n^2+2n+1}{n^2+2n}\)
\(A=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{\left(n+1\right)^2}{n^2+2n}\)
\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)
\(A=\frac{2.3.4...\left(n+1\right)}{1.2.3...n}.\frac{2.3.4...\left(n+1\right)}{3.4.5...\left(n+2\right)}\)
\(A=\left(n+1\right).\frac{2}{n+2}=\frac{2.\left(n+1\right)}{n+2}\)
Ta có : \(1+\frac{1}{k^2+2k}=\frac{k^2+2k+1}{k^2+2k}=\frac{\left(k+1\right)^2}{k\left(k+2\right)}\) với k thuộc N*
Áp dụng với k = 1,2,3,....,n được :
\(A=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\)
\(=\frac{\left(1+1\right)^2}{1.\left(1+2\right)}.\frac{\left(2+1\right)^2}{2.\left(2+2\right)}.\frac{\left(3+1\right)^2}{3.\left(3+2\right)}...\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)
\(=\frac{\left[2.3.4...\left(n+1\right)\right]^2}{1.2.3...n.3.4.5...\left(n+2\right)}=\frac{\left[\left(n+1\right)!\right]^2}{n!.\frac{\left(n+2\right)!}{2}}\)
\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{x}\left(1+2+3+...+x\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+...+\frac{1}{x}.\frac{x\left(x+1\right)}{2}\)
\(=\frac{1}{2}\left(2+3+4+...+x+1\right)\)
\(=\frac{1}{2}.\frac{\left(x+1+2\right)x}{2}=\frac{1}{4}\left(x+3\right)x\)
Để B=115 thì \(\frac{1}{4}\left(x+3\right)x=115\)
\(\Leftrightarrow\frac{1}{4}x^2+\frac{3}{4}x-115=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=20\\x=-23\left(loai\right)\end{matrix}\right.\)
Vậy x=20 thì B=115