K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2^m-2^n=512\)

\(\Rightarrow2^m-2^n=2^9\)

\(\Rightarrow m=10;n=9\)

12 tháng 9 2019

\(2^m-2^n=512\Leftrightarrow2^m-2^n=2^9\Leftrightarrow2^m>2^n\Leftrightarrow m>n\)

\(TH1:m-n=1\)

\(\Rightarrow2^m-2^n=2^n\left(2^{m-n}+1\right)=2^9\Leftrightarrow2^n.\left(2-1\right)=2^9\)

\(\Leftrightarrow2^n=2^9\Leftrightarrow n=9\)\(\Rightarrow m=10\)

\(TH2:m-n>2\),\(2^n\left(2^{m-n}+1\right)=2^9\)

Vế trái có thừa số \(2^{m-n}+1\)lẻ (Vì m - n >2 nên \(2^{m-n}\)chẵn\(\Leftrightarrow2^{m-n}+1\)lẻ)

Vậy m = 10; n = 9

18 tháng 12 2018

vì m và n đều là số nguyên dương mà \(2^m-2^n=512\Rightarrow m>n\)

Đặt m=n+k( k>0,k thuộc Z+)

\(2^{n+k}-2^n=2^9\Rightarrow2^n.\left(2^k-1\right)=2^9\)

vì 2k-1 là số lẻ mà Ước của 29 chỉ có 1 là số lẻ => 2k-1=1=> 2k=2=> k=1

=> 2n=29 => n=9. m=1+9=10

Vậy n=9,m=10

18 tháng 12 2018

    \(2^m-2^n=512\)

\(\implies 2^m-2^n=2^9>0\)

\(\implies 2^m-2^n>0\)

\(\implies m>n\)

\(\implies 2^n(2^{m-n}-1)=2^9.1\)

Thấy \(2^{m-n}-1 \neq0\implies 2^{m-n}\neq1\implies m-n\neq0\)

\(\implies 2^{m-n}\vdots2\)

\(\implies 2^{m-n}-1\) chia 2 dư 1

\(\implies\)\(\hept{\begin{cases}2^n=2^9\\2^{m-n}-1=1\end{cases}\Rightarrow\hept{\begin{cases}n=9\\m-n=1\end{cases}\Rightarrow}\hept{\begin{cases}n=9\\m=10\end{cases}}}\)

Vậy n=9;m=10(tmđk)

_Học tốt_

11 tháng 8 2015

 Ta có 2m - 2n > 0 => 2m > 2n => m > n
Nên (1) ( 2n(2m-n – 1) = 28
Vì m-n > 0 => 2m-n– 1 lẽ => 2m-n-1 =1 => 2m-n= 21
=> m - n =1 => m = n +1 => n = 8, m = 9

12 tháng 8 2015

2m-2n > 0 => 2m>2n => m>n

2m-2n=256

2n(2m-n-1) = 28

* Nếu m-n =1 thì

2n(2m-n-1)=28

2n(2-1)     =28

2n = 28

=> n=8

m-n = 1

m-8 = 1

m = 8+1

m=9

* Nếu m-n lớn hơn hoặc bằng 2 thì :

2m-n-1 là số lẻ lớn hơn 1 nên vế trái là thừa số nguyên tố lẻ mà vế phải (28) là thừa số nguyên tố lẻ nên mâu thuẫn

Vậy m=9 ; n=8

 

 

10 tháng 9 2020

Ta có : 2m - 2n = 256 

Đặt m = n + k (Vì 2m > 2n) (k > 0 ; k \(\inℕ\))

Khi đó 2n.2k - 2n = 256

=> 2n(2k - 1) = 256

Vì k> 0 => 2k > 0 => 2k - 1 > 0 <=> k > 1

Mà 2k chẵn với k > 0

=> 2k - 1 lẻ với k > 1 (1)

Vì 2n(2- 1) chẵn => 2k - 1 chẵn hoặc 2k - 1 = 1

mà xét vớ (1) ta chỉ nhận được 2k - 1 = 1

=> k = 1

=> n = 9

=> m = 10

Vậy n = 9 ; m = 10

10 tháng 9 2020

\(2^m-2^n=256=2^8\)---> Chia 2 vế cho 2n

\(\Leftrightarrow2^{m-n}-1=2^{8-n}\)

\(\Leftrightarrow2^{m-n}-2^{8-n}=1\)

\(\Leftrightarrow2^{8-n}\left(2^{m-8}-1\right)=1\)---> Vì các lũy thừa với số mũ tự nhiên của 2 không thể bé hơn 1 nên pt chỉ có nghiệm khi:

\(\hept{\begin{cases}2^{8-n}=1\\2^{m-8}-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}2^{8-n}=2^0\\2^{m-8}=2^1\end{cases}\Leftrightarrow}\hept{\begin{cases}8-n=0\\m-8=1\end{cases}\Leftrightarrow}\hept{\begin{cases}n=8\\m=9\end{cases}}}\)

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:Dương...
Đọc tiếp

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.

Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.

Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.

Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.

Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:

  1. Dương với mọi x, y khác 0.
  2. Âm với mọi x, y khác 0.

Bài 6: Cho các đa thức A = 5x2 + 6xy – 7y2; B = -9x2 – 8xy + 11y2; C = 6x2 + 2xy – 3y2.

Chứng tỏ rằng: A, B, C không thể cùng có giá trị âm.

Bài 7: Cho ba số: a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng: ab + 2bc + 3ca ≤ 0.

Bài 8: Chứng minh rằng: (x – y)(x4 + x3y + x2y2 + xy3 + y4) = x5 – y5.

Bài 9: Cho x > y > 1 và x5 + y5 = x – y. Chứng minh rằng: x4 + y4 < 1.

Bài 10: Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số.

Bài 11: Cho đa thức P(x) = ax2 + bx + c. Chứng tỏ rằng nếu 5a + b + 2c = 0 thì P(2).P(-1) ≤ 0.

Bài 12: Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.

Bài 13: Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.

Bài 14: Đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ. Chứng minh rằng: P(x) không thể có nghiệm là số nguyên.

Bài 15: Tìm một số biết rằng ba lần bình phương của nó đúng bằng hai lần lập phương của số đó.

Bài 16: Chứng minh rằng đa thức P(x) = x3 – x + 5 không có nghiệm nguyên.

cần gấp nha các bạn giải giùm mình PLEASE

3
1 tháng 5 2018

Đăng từng bài thoy nha pn!!!

Bài 1:

Có : 2009 = 2008 + 1 = x + 1

Thay 2009 = x + 1 vào biểu thức trên,ta có : 

  x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010

= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)

= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1

= -2

1 tháng 5 2018

mình cũng chơi truy kich

DD
1 tháng 3 2021

Không mất tính tổng quát, giả sử \(1\le a\le b\).

\(2^a.2^b=2^{a+b}=2^a+2^b=2^a\left(1+2^{b-a}\right)\)

\(\Leftrightarrow2^b=1+2^{b-a}\)

có \(b\ge1\)nên \(2^b\)là số chẵn suy ra \(1+2^{b-a}\)là số chẵn suy ra \(2^{b-a}=1\Leftrightarrow b-a=0\Leftrightarrow a=b\)

Với \(a=b\)\(2^a+2^b=2^{a+b}\Leftrightarrow2.2^a=2^{2a}\Leftrightarrow a+1=2a\Leftrightarrow a=1\).

Vậy \(a=b=1\).

a và b có thể bằng bất cứ số nào lớn hơn 0