K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

Đối với một bài nhìn vào bạn không thể liên tưởng đến một cách giải nào thì cách an toàn và sẽ đi thẳng đến đáp số là phân tích các đa thức trong dấu căn rồi rút gọn . Bài này là một trong số đó : 
( x + 1 ) * ( x - 2 )^2 + x^2*( 4 - x ) =13 
<=>(x+1)*(x^2 - 4x + 4) + 4*x^2 - x^3 =13 
<=> x^3 - 4x^2 + 4x + x^2 - 4x + 4 + 4*x^2 - x^3 =13 
<=> x^2 + 4 = 13 
<=> x^2 = 9 
<=> x = 3 hoặc x = -3 
Vậy tập nghiệm S ={ -3;3 }. 

28 tháng 9 2017

\(A=3\left(x+y\right)^2-6xy-\left(x+y\right)^3+3xy\left(x+y\right)\)

Mà x+y=2

\(\Rightarrow A=3.2^2-6xy-2^3+6xy\)

\(=12-8\)

\(=4\)

5 tháng 9 2016

bt sau khi nhân ra sẽ bằng  x^3 - 4x^2 + 4x + x^2 - 4x + 4  + 4x ^2 - x^3 = 13 <=> x ^ 2 + 4 = 13 <=> x ^2 = 9  <=> x thuộc {-3; 3} 

vậy x thuộc {-3; 3}

10 tháng 1 2018

a)              \(x^2-5x+4=0\)

\(\Leftrightarrow\)\(x^2-x-4x+4=0\)

\(\Leftrightarrow\)\(x\left(x-1\right)-4\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=4\end{cases}}\)

Vậy tổng các giá trị nguyên của x thỏa mãn là:

                \(1+4=5\)

20 tháng 6 2017

Ta có : A = x2 - 4x + 1 

=> A = x2 - 2.x.2 + 4 - 3 

=> A = (x - 2)2 - 3 

Mà : (x - 2)2 \(\ge0\forall x\in R\)

Nên :   (x - 2)2 - 3 \(\ge-3\forall x\in R\)

Vậy GTNN của A là -3 khi x = 2 

20 tháng 6 2017

\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)

Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)

Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2

Vậy gtnn của B là 10 khi x=-1/2
---

\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)

Dấu "=" xảy ra khi x=0 hoặc x=-5

26 tháng 12 2017

A = \(\frac{-1}{3}x^2+2x-5\)

   = \(\frac{-1}{3}.\left(x^2-6+15\right)\)

\(\frac{-1}{3}.\left(x^2-2.x.3+3^2-3^2+5\right)\)

\(\frac{-1}{3}.\left[\left(x-3\right)^2-4\right]\)

\(\frac{-1}{3}.\left(x-3\right)^2+\frac{4}{3}\)

-Ta có: \(\frac{-1}{3}.\left(x-3\right)^2\le0\).Với mọi x

      => \(\frac{-1}{3}.\left(x-3\right)^2+\frac{4}{3}\le\frac{4}{3}\).Với mọi x

hay A \(\le\frac{4}{3}\).Với mọi x

- Dấu " = " xảy ra khi: (x - 3)2 = 0   <=> x = 3

       Vậy GTLN của A = \(\frac{4}{3}\)khi x = 3

26 tháng 12 2017

đề mình đăng nhầm các bạn trình bày câu trả lời tại đây giúp nhé

https://olm.vn//hoi-dap/question/1120717.html?auto=2

28 tháng 1 2019

Mấy bài này khó :( nghĩ được bài nào làm bài đấy nhé,  bạn thông cảm

a, Dùng phương pháp kẹp 

Do \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(\Rightarrow x^3+x^2+x+1>x^3\)

\(\Rightarrow y^3>x^3\)

\(\Rightarrow y>x\)(1)

Xét hiệu \(\left(x+2\right)^3-y^3=x^3+6x^2+12x+8-y^3\)

                                              \(=x^3+6x^2+12x+8-x^3-x^2-x-1\)

                                              \(=5x^2+11x+7\)

                                              \(=5\left(x+\frac{11}{10}\right)^2+\frac{19}{20}>0\forall x\)

\(\Rightarrow\left(x+2\right)^3>y^3\)

\(\Rightarrow x+2>y\)(2)

Từ \(\left(1\right)\&\left(2\right)\Rightarrow x< y< x+2\)

Mà \(x;y\inℤ\Rightarrow y=x+1\)

Thế vào pt ban đầu đc \(x^3+x^2+x+1=\left(x+1\right)^3\)

                            \(\Leftrightarrow x^3+x^2+x+1=x^3+3x^2+3x+1\)

                           \(\Leftrightarrow2x^2+2x=0\)

                          \(\Leftrightarrow2x\left(x+1\right)=0\)

                            \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(tm\right)}\)

*Với x = 0 => y= 1

*Với x = -1 => y = 0

Vậy ...

29 tháng 1 2019

Ailamfgiups mình caaub,c, d với