K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2018

\(\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

\(=\frac{x^3+y^3+z^3-3xyz}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2}=\frac{\left(x+y+z\right).\left(x^2+y^2+z^2-xy-yz-zx\right)}{2.\left(x^2+y^2+z^2-xy-yz-zx\right)}=\frac{x+y+z}{2}\)

p/s: áp dụng 7 hàng đẳng thức là làm đc =)

24 tháng 1 2021

sai đề rồi nhé , đề phải là :

\(\frac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\frac{\left(x-y\right)^3+3xy.\left(x-y\right)+z^3+3xyz}{x^2+2xy+y^2+y^2+2yz+z^2+z^2-2xz+x^2}\)

\(=\frac{\left(x-y+z\right).\left[\left(x-y\right)^2-\left(x-y\right).z+z^2\right]+3xy.\left(x-y+z\right)}{2x^2+2y^2+2z^2+2xy+2yz-2xz}\)

\(=\frac{\left(x-y+z\right).\left(x^2-2xy+y^2-xz+yz+z^2+3xy\right)}{2.\left(x^2+y^2+z^2+xy+yz-xz\right)}\)

\(=\frac{\left(x-y+z\right).\left(x^2+y^2+z^2+xy+yz-xz\right)}{2.\left(x^2+y^2+z^2+xy+yz-xz\right)}\)

\(=\frac{x-y+z}{2}\)

15 tháng 11 2016

mình mới học lớp 7 thui à

Nếu lớp 8 thì sẽ giúp bạn liền

15 tháng 11 2016
Phân tích mẫu ra hằng đẳng thức.. xong nhân đa thức thành nhân tử thử xem . Ròi rút gọn
16 tháng 11 2016

Xem lại đề đi bạn. Có - 3xyz trên tử không

14 tháng 9 2015

a/ \(\frac{3x^2-11x+8}{2x^2-9x+7}=\frac{\left(x-1\right)\left(3x-8\right)}{\left(x-1\right)\left(2x-7\right)}=\frac{3x-8}{2x-7}\)

câu b,c tương tự nha ^^

DD
8 tháng 10 2021

\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)^3-3\left(x+y\right)z\left(x+y+z\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3zx\right]\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(=\frac{1}{2}\left(x+y+z\right)\left(x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\right)\)

\(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)

Suy ra \(\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{1}{2}\left(x+y+z\right)\)

20 tháng 11 2016

\(\frac{x^3-y^3+z^3+3xzy}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\frac{\left(x-y\right)^3+z^3+3x^2y-3xy^2+3xyz}{2x^2+2y^2+2z^2+2xy+2yz-2xz}\)

\(=\frac{\left(x-y+z\right)\left[\left(x-y\right)^2+z^2-\left(x-y\right)z\right]+3xy\left(x-y+z\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)

\(=\frac{\left(x-y+z\right)\left[x^2+y^2-2xy+z^2-xz+yz+3xy\right]}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)

\(=\frac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy+yz-xz\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)

\(=\frac{x-y+z}{2}\)

8 tháng 12 2017

x3y3+z3+3xzy(x+y)2+(y+z)2+(zx)2 

=(xy)3+z3+3x2y3xy2+3xyz2x2+2y2+2z2+2xy+2yz2xz 

=(xy+z)[(xy)2+z2(xy)z]+3xy(xy+z)2(x2+y2+z2+xy+yzxz) 

=(xy+z)[x2+y22xy+z2xz+yz+3xy]2(x2+y2+z2+xy+yzxz) 

=(xy+z)(x2+y2+z2+xy+yzxz)2(x2+y2+z2+xy+yzxz) 

=xy+z2