K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

A = \(\frac{-1}{3}x^2+2x-5\)

   = \(\frac{-1}{3}.\left(x^2-6+15\right)\)

\(\frac{-1}{3}.\left(x^2-2.x.3+3^2-3^2+5\right)\)

\(\frac{-1}{3}.\left[\left(x-3\right)^2-4\right]\)

\(\frac{-1}{3}.\left(x-3\right)^2+\frac{4}{3}\)

-Ta có: \(\frac{-1}{3}.\left(x-3\right)^2\le0\).Với mọi x

      => \(\frac{-1}{3}.\left(x-3\right)^2+\frac{4}{3}\le\frac{4}{3}\).Với mọi x

hay A \(\le\frac{4}{3}\).Với mọi x

- Dấu " = " xảy ra khi: (x - 3)2 = 0   <=> x = 3

       Vậy GTLN của A = \(\frac{4}{3}\)khi x = 3

26 tháng 12 2017

đề mình đăng nhầm các bạn trình bày câu trả lời tại đây giúp nhé

https://olm.vn//hoi-dap/question/1120717.html?auto=2

1 tháng 2 2018

A=x2y2+2x2+24xy+16x+191

A={(xy)2+24xy+144}+(2x2+16x+32)+15

A=(xy+12)2 + 2(x+4)2 + 15

Nhận thấy: \(\hept{\begin{cases}\left(xy+12\right)^2\ge0\\2\left(x+4\right)^2\ge0\end{cases}}\)Với mọi x, y

=> A=(xy+12)2 + 2(x+4)2 + 15 \(\ge\)0+0+15 Với mọi x, y

=> GTNN của A=15

Đạt được khi: \(\hept{\begin{cases}\left(xy+12\right)^2=0\\2\left(x+4\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}xy+12=0\\x+4=0\end{cases}}\)<=> \(\hept{\begin{cases}y=3\\x=-4\end{cases}}\)

Đáp số: GTNN là 15, đạt được khi x=-4; y=3

10 tháng 1 2018

a)              \(x^2-5x+4=0\)

\(\Leftrightarrow\)\(x^2-x-4x+4=0\)

\(\Leftrightarrow\)\(x\left(x-1\right)-4\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=4\end{cases}}\)

Vậy tổng các giá trị nguyên của x thỏa mãn là:

                \(1+4=5\)

21 tháng 7 2018

B1 Xét (7x+1)\(^2\)-(x+7)\(^2\)-48(x\(^2\)-1)

=49\(x^2\)+14x+1-x\(^2\)-14x-49-48x\(^2\)+48

=0

Vậy \(\left(7x+1\right)^2-\left(x+7\right)^2=48\left(x^2-1\right)\)

B2 \(16x^2-\left(4x-5\right)^2=15\)

(4x)\(^2\)-(4x-5)\(^2\)-15=0

(4x-4x+5)(4x+4x-5)-15=09x-5)=0

5(8x-5)-15=0

40x-25-15=0

40x-40=0

x        =1

câu B3 mình không bik làm 

chúc bạn học tốt ~~~

21 tháng 7 2018

Bài 3:

\(A=x^2+2x+3\)

\(=\left(x+1\right)^2+2\ge2\)

Vậy  MIN  \(A=2\)   khi    \(x=-1\)

p/s: chúc bạn học tốt

20 tháng 6 2017

Ta có : A = x2 - 4x + 1 

=> A = x2 - 2.x.2 + 4 - 3 

=> A = (x - 2)2 - 3 

Mà : (x - 2)2 \(\ge0\forall x\in R\)

Nên :   (x - 2)2 - 3 \(\ge-3\forall x\in R\)

Vậy GTNN của A là -3 khi x = 2 

20 tháng 6 2017

\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)

Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)

Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2

Vậy gtnn của B là 10 khi x=-1/2
---

\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)

Dấu "=" xảy ra khi x=0 hoặc x=-5

10 tháng 10 2015

A = 2

B = -5

C = 8 

chắc là z !