Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=x2y2+2x2+24xy+16x+191
A={(xy)2+24xy+144}+(2x2+16x+32)+15
A=(xy+12)2 + 2(x+4)2 + 15
Nhận thấy: \(\hept{\begin{cases}\left(xy+12\right)^2\ge0\\2\left(x+4\right)^2\ge0\end{cases}}\)Với mọi x, y
=> A=(xy+12)2 + 2(x+4)2 + 15 \(\ge\)0+0+15 Với mọi x, y
=> GTNN của A=15
Đạt được khi: \(\hept{\begin{cases}\left(xy+12\right)^2=0\\2\left(x+4\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}xy+12=0\\x+4=0\end{cases}}\)<=> \(\hept{\begin{cases}y=3\\x=-4\end{cases}}\)
Đáp số: GTNN là 15, đạt được khi x=-4; y=3
a) \(x^2-5x+4=0\)
\(\Leftrightarrow\)\(x^2-x-4x+4=0\)
\(\Leftrightarrow\)\(x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
Vậy tổng các giá trị nguyên của x thỏa mãn là:
\(1+4=5\)
B1 Xét (7x+1)\(^2\)-(x+7)\(^2\)-48(x\(^2\)-1)
=49\(x^2\)+14x+1-x\(^2\)-14x-49-48x\(^2\)+48
=0
Vậy \(\left(7x+1\right)^2-\left(x+7\right)^2=48\left(x^2-1\right)\)
B2 \(16x^2-\left(4x-5\right)^2=15\)
(4x)\(^2\)-(4x-5)\(^2\)-15=0
(4x-4x+5)(4x+4x-5)-15=09x-5)=0
5(8x-5)-15=0
40x-25-15=0
40x-40=0
x =1
câu B3 mình không bik làm
chúc bạn học tốt ~~~
Ta có : A = x2 - 4x + 1
=> A = x2 - 2.x.2 + 4 - 3
=> A = (x - 2)2 - 3
Mà : (x - 2)2 \(\ge0\forall x\in R\)
Nên : (x - 2)2 - 3 \(\ge-3\forall x\in R\)
Vậy GTNN của A là -3 khi x = 2
\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2
Vậy gtnn của B là 10 khi x=-1/2
---
\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi x=0 hoặc x=-5
A = \(\frac{-1}{3}x^2+2x-5\)
= \(\frac{-1}{3}.\left(x^2-6+15\right)\)
= \(\frac{-1}{3}.\left(x^2-2.x.3+3^2-3^2+5\right)\)
= \(\frac{-1}{3}.\left[\left(x-3\right)^2-4\right]\)
= \(\frac{-1}{3}.\left(x-3\right)^2+\frac{4}{3}\)
-Ta có: \(\frac{-1}{3}.\left(x-3\right)^2\le0\).Với mọi x
=> \(\frac{-1}{3}.\left(x-3\right)^2+\frac{4}{3}\le\frac{4}{3}\).Với mọi x
hay A \(\le\frac{4}{3}\).Với mọi x
- Dấu " = " xảy ra khi: (x - 3)2 = 0 <=> x = 3
Vậy GTLN của A = \(\frac{4}{3}\)khi x = 3
đề mình đăng nhầm các bạn trình bày câu trả lời tại đây giúp nhé
https://olm.vn//hoi-dap/question/1120717.html?auto=2