Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì cả hai số đều chia hết cho 2 số: nên số thứ nhất ta viết dưới dạng tích là: 36.a
tương tự ta có số thứ 2 ta viết dưới dạng 36.b
theo bài ra thì 36 là ước chung lớn nhất nên a, b là hai số tự nhiên < 36 và a,b là hai số nguyên tố cùng nhau hay nói cách khác chúng có ước chung lớn nhất là 1
Theo bài ra ta có:
36a+36b = 288
=> 36(a+b) = 288
=> a+b = 288: 36
=> a+b = 8
Nếu a = 0, => b = 8 (loại)
Nếu a = 1 => b = 7 ta có 2 số cần tìm là: 36 và 252
Nếu a = 2 => b = 6 (loại)
Nếu a = 3 => b = 5 ta có 2 số cần tìm là: 108 và 180
Nếu a = 4 => b = 4 (Loại)
Vậy hai số tự nhiên cần tìm thỏa mãn là : 36 và 252 hoặc 108 và 180
Gọi hai số tự nhiên cần tìm là a và b (a ; b N )
Vì ƯCLN ( a, b ) = 36 nên a = 36 m ; b = 36n
(m , n ) = 1
Theo đề bài ra , ta có : a + b = 36m + 36n = 432 36(m+n) = 432 m + n = 12
Ta tìm được các cặp mn thoả mãn điều kiện :
(m,n) = {( 1,11);(11,1);(5,7);(7,5)}
Vậy (a,b) = {(36, 396);(396;36);(180, 252);(252,180)}
Chúc bạn học tốt!
(a,b) = 36 => a = 36 . m b = 36 . n và (m,n) = 1
36 . m + 36 . n = 432 => m + n = 432 : 36 = 12
Do m; n là 2 nguyên tố cùng nhau nên ta chọn: 12 = 5 + 7 = 7 + 5
- Khi m = 5 và n = 7 => a = 180 và b = 252
- Khi m = 7 và n = 5=> a = 252 và b = 180
Vậy: 2 số tự nhiên đó là (180;252) hoặc (252;180)
Vì ƯCLN của hai số bằng 28 nên đặt a = 28k b = 28p , k và p là số tự nhiên
Ta có : 28 ( k + p ) = 224 => k + p = 8
Vậy các cấp ( a , b ) thỏa mãn là ( 28 ; 196 ) , ( 56 ; 168 ) , ( 84 ; 140 ) , ( 112 ; 112 )
tick mình nha lenguyenminhhang
Gọi 2 số tự nhiên cần tìm là a;b
Theo bài ra ta có :
a + b = a.b
=> a.b - a - b = 0
=> a(b - 1) - b = 0
=> a(b - 1) - (b - 1) = 1
=> (a - 1).(b - 1) = 1
Với \(a;b\inℕ^∗\Rightarrow\hept{\begin{cases}a-1\inℕ^∗\\b-1\inℕ^∗\end{cases}}\)
Khi đó có 1 = 1.1
=> \(\hept{\begin{cases}a-1=1\\a-1=1\end{cases}\Rightarrow a=b=2}\)
Vậy cặp số (a;b) thỏa mãn là : (2 ; 2)
Gọi hai số tự nhiên cần tìm là a và b
Theo đề ra , ta có : a + b = 432 và ƯCLN(a,b) = 36
Do : ƯCLN(a,b) = 36 => a = 36 .k1 ; b = 36 . k2
Mà : ƯCLN(k1,k2) = 1
Thay vào : a + b = 432 thì ta có : 36 . k1 + 36 . k2 = 432 = 36 ( k1 + k2 )
=> k1 + k2 = 432 : 36
=> k1 + k2 = 12
Nên ta có bảng sau :
Loại
+) Vì : k1 = 1 => a = 36 ; k2 = 11 => b = 396
Hoặc : k1 = 5 => a = 180 ; k2 = 7 => b = 252
Vậy a = 36 thì b = 396
a = 180 thì b = 252
///////////////////////////////////////////////////////////////////////////////