Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì cả hai số đều chia hết cho 2 số: nên số thứ nhất ta viết dưới dạng tích là: 36.a
tương tự ta có số thứ 2 ta viết dưới dạng 36.b
theo bài ra thì 36 là ước chung lớn nhất nên a, b là hai số tự nhiên < 36 và a,b là hai số nguyên tố cùng nhau hay nói cách khác chúng có ước chung lớn nhất là 1
Theo bài ra ta có:
36a+36b = 288
=> 36(a+b) = 288
=> a+b = 288: 36
=> a+b = 8
Nếu a = 0, => b = 8 (loại)
Nếu a = 1 => b = 7 ta có 2 số cần tìm là: 36 và 252
Nếu a = 2 => b = 6 (loại)
Nếu a = 3 => b = 5 ta có 2 số cần tìm là: 108 và 180
Nếu a = 4 => b = 4 (Loại)
Vậy hai số tự nhiên cần tìm thỏa mãn là : 36 và 252 hoặc 108 và 180
Bài 1:
Gọi UCLN của n+1 và 3n+4 là d.
Suy ra:n+1 chia hết cho d
3n+4 chia hết cho d
Suy ra:3n+3 chia hết cho d
3n+4 chia hết cho d
Suy ra:(3n+4)-(3n+3) chia het cho d
Suy ra: 1 chia hết cho d
Vậy d=1.
VẬY 2 SỐ n+1 VÀ 3n+4 LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU>
Gọi a = 18 . k ; b = 18 . l thì (k ; l) = 1 và k ; l thuộc N*
Ta có a . b = 18 . k . 18 . l = 1944
18 . 18 . k . l = 1944
324 . k . l = 1944
k . l = 1944 : 324
k . l = 6
Ta có bảng sau :
k | 3 | 6 |
l | 2 | 1 |
a = 18 . k | 54 | 108 |
b = 18 . l | 36 | 18 |
Vậy ta có các bộ số (a , b) = (54 , 36) ; (108 , 18).
Vì ƯCLN(a,b) = 28
\(\Rightarrow\left\{{}\begin{matrix}a=28k\\b=28q\end{matrix}\right.\)( ƯCLN(k.q)=1 , k > q )
Mà : \(a+b=224\) \(\Rightarrow28k+28q=224\)
\(\Rightarrow28\left(k+q\right)=224\Rightarrow k+q=224\div28=8\)
Mà : k > q
+) \(\Rightarrow\left\{{}\begin{matrix}k=7\\q=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=28.7\\b=28.1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=196\\b=28\end{matrix}\right.\)
+) \(\Rightarrow\left\{{}\begin{matrix}k=6\\q=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=28.6\\b=2.28\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=168\\b=56\end{matrix}\right.\)
+) \(\Rightarrow\left\{{}\begin{matrix}k=5\\q=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=28.5\\b=28.3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=140\\b=84\end{matrix}\right.\)
Vậy a = 196 ; b = 28
a = 168 ; b = 56
a = 140 ; b = 84
Vì ƯCLN của hai số bằng 28 nên đặt a = 28k b = 28p , k và p là số tự nhiên
Ta có : 28 ( k + p ) = 224 => k + p = 8
Vậy các cấp ( a , b ) thỏa mãn là ( 28 ; 196 ) , ( 56 ; 168 ) , ( 84 ; 140 ) , ( 112 ; 112 )
tick mình nha lenguyenminhhang