Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu1
\(x+30\%=-1,3\)
\(x+\frac{3}{10}=\frac{-13}{10}\)
\(x=\frac{-13}{10}-\frac{3}{10}\)
\(x=\frac{-10}{10}=-1\)
+) \(A=3\left(x-4\right)^4-4\ge-4\)
Min A = -4 \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)
+) \(B=5+2\left(x-2019\right)^{2020}\ge5\)
Min B = 5 \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)
+) \(C=5+2018\left(2020-x\right)^2\)
Min C = 5 \(\Leftrightarrow2020-x=0\Leftrightarrow x=2020\)
+) \(D=\left(x-1\right)^{2020}+\left(y+x\right)-1\ge-1\)
Min D = -1 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-x\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
+) \(E=2\left(x-1\right)^2+3\left(2x-y\right)^4-2\ge-2\)
Min E = -2 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\2x-y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\2x=y\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
20182018 - 20182017= 20182019 - 20182018: Vì
20182018- 20182017 = 20181 và 20182019 - 20182018 = 20181
Do vậy : 20181 = 20181
1.a. 2S=\(2+2^2+2^3+...+2^{10}\)
2S -S=(\(2+2^2+2^3+...+2^{10}\)) - (1+2+22+...+29)
S= 210 -1
a ) Ta có : \(81^{15}=\left(3^4\right)^{15}=3^{60}\)
\(27^{20}=\left(3^3\right)^{20}=3^{60}\)
Vì \(3^{60}=3^{60}\)
Vậy \(81^{15}=27^{20}\)
b ) \(A=2018^2\)
\(=2018\cdot2018=2018\cdot\left(2019-1\right)=2018\cdot2019-2018\)
\(B=2017\cdot2019\)
\(=2019\cdot\left(2018-1\right)=2019\cdot2018-2019\)
Vì \(2018\cdot2019-2018>2019\cdot2018-2019\)
Vậy\(A>B\)
Mình trước nhá
\(81^{15}\)và \(27^{20}\)
ta có : \(81^{15}\) = (\(3^4\))\(^{15}\)= \(3^{60}\)
\(27^{20}\)=(\(3^3\))\(^{20}\)=\(3^{60}\)
vì \(3^{60}\)=\(3^{60}\)
=>\(81^{15}\)=\(27^{20}\)
So sánh :
A = \(\frac{2018^{2019}+1}{2018^{2020}+1}\)và B = \(\frac{2018^{2018}+1}{2018^{2019}+1}\)
Ta có :
+ , A = \(\frac{2018^{2019}+1}{2018^{2020}+1}\)
2018A = \(\frac{2018\left(2018^{2019}+1\right)}{2018^{2020}+1}\)
2018A = \(\frac{2018^{2020}+2018}{2018^{2020}+1}\)
2018A = \(1\frac{2018}{2018^{2020}+1}\)
+ , B = \(\frac{2018^{2018}+1}{2018^{2019}+1}\)
2018B = \(\frac{2018\left(2018^{2018}+1\right)}{2018^{2019}+1}\)
2018B = \(\frac{2018^{2019}+2018}{2018^{2019}+1}\)
2018B = \(1\frac{2018}{2018^{2019}+1}\)
Ta thấy :
20182019 + 1 < 20182020 + 1
= > \(\frac{2018}{2018^{2019}+1}\)> \(\frac{2018}{2018^{2020}+1}\)
= > B > A
Vậy B > A