Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Ta có : \(81^{15}=\left(3^4\right)^{15}=3^{60}\)
\(27^{20}=\left(3^3\right)^{20}=3^{60}\)
Vì \(3^{60}=3^{60}\)
Vậy \(81^{15}=27^{20}\)
b ) \(A=2018^2\)
\(=2018\cdot2018=2018\cdot\left(2019-1\right)=2018\cdot2019-2018\)
\(B=2017\cdot2019\)
\(=2019\cdot\left(2018-1\right)=2019\cdot2018-2019\)
Vì \(2018\cdot2019-2018>2019\cdot2018-2019\)
Vậy\(A>B\)
Mình trước nhá
\(81^{15}\)và \(27^{20}\)
ta có : \(81^{15}\) = (\(3^4\))\(^{15}\)= \(3^{60}\)
\(27^{20}\)=(\(3^3\))\(^{20}\)=\(3^{60}\)
vì \(3^{60}\)=\(3^{60}\)
=>\(81^{15}\)=\(27^{20}\)
câu1
\(x+30\%=-1,3\)
\(x+\frac{3}{10}=\frac{-13}{10}\)
\(x=\frac{-13}{10}-\frac{3}{10}\)
\(x=\frac{-10}{10}=-1\)
So sánh :
A = \(\frac{2018^{2019}+1}{2018^{2020}+1}\)và B = \(\frac{2018^{2018}+1}{2018^{2019}+1}\)
Ta có :
+ , A = \(\frac{2018^{2019}+1}{2018^{2020}+1}\)
2018A = \(\frac{2018\left(2018^{2019}+1\right)}{2018^{2020}+1}\)
2018A = \(\frac{2018^{2020}+2018}{2018^{2020}+1}\)
2018A = \(1\frac{2018}{2018^{2020}+1}\)
+ , B = \(\frac{2018^{2018}+1}{2018^{2019}+1}\)
2018B = \(\frac{2018\left(2018^{2018}+1\right)}{2018^{2019}+1}\)
2018B = \(\frac{2018^{2019}+2018}{2018^{2019}+1}\)
2018B = \(1\frac{2018}{2018^{2019}+1}\)
Ta thấy :
20182019 + 1 < 20182020 + 1
= > \(\frac{2018}{2018^{2019}+1}\)> \(\frac{2018}{2018^{2020}+1}\)
= > B > A
Vậy B > A
Ai trả lời là k,k cần cần trả lời nh j và đúng hay sai đâu nha
\(\left(x-2018\right)^{2019}=\left(x-2018\right)^{2018}\)
\(\Rightarrow\left(x-2018\right)^{2019}-\left(x-2018\right)^{2018}=0\)
\(\Rightarrow\left(x-2018\right)^{2018}\left[\left(x-2018\right)-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-2018\right)^{2018}=0\\\left(x-2018\right)-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x-2018=0\\x-2018=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=2018\\x=2019\end{cases}}\)
Vậy x = 2018 hoặc x = 2019
_Chúc bạn học tốt_
\(2018^{2019}-2018^{2018}=2018^{2018}.2018-2018^{2018}=2018^{2018}\left(2018-1\right)\)
\(2018^{2018}-2018^{2017}=2018^{2017}.2018-2018^{2017}=2018^{2017}\left(2018-1\right)\)
\(2018^{2019}-2018^{2018}>2018^{2018}-2018^{2017}\)
(x-2018)2019 = (x-2018)2017
=> (x-2018) = 0 hoặc 1
Vậy x = 2018 hoặc 2019
20182018 - 20182017= 20182019 - 20182018: Vì
20182018- 20182017 = 20181 và 20182019 - 20182018 = 20181
Do vậy : 20181 = 20181