Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = (x + 1)(x + 2)(x + 3)(x + 4) - 24
A = (x + 1)(x + 4)(x + 2)(x + 3) - 24
A = (x2 + 5x + 4)(x2 + 5x + 6) - 24
Đặt x2 + 5x + 4 = k
=> k(k + 2) - 24 = k2 + 2k - 24 = k2 + 6k - 4k - 24 = k(k + 6) - 4(k + 6) = (k - 4)(k + 6)
=> (x2 + 5x + 4 - 4)(x2 + 5x + 4 + 6) = (x2 + 5x)(x2 + 5x + 10) = x(x + 5)(x2 + 5x + 10)
Do x + 5 \(⋮\)x + 5 => x(x + 5)(x2 + 5x + 10) \(⋮\)x + 5
Lưu ý : dấu " : " là dấu " chia hết cho "
a)
2a + b : 13
=> 2 ( 2a + b ) : 13
=> 4a + 2b : 13
mà 5a - 4b : 13
=> 5a - 4b - 4a - 2b : 13
=> a - 6b : 13 ( đpcm )
b)
Đặt A = 100a + b và B = a + 4b
Vì A : 7
=> 3A : 7
hay 300a + 3b : 7
Xét 3A + B
= 300a + 3b + a + 4b
= 301a + 7b
= 7 ( 43a + b ) : 7
=> 3A + B : 7
mà 3A : 7 ( cm trên ) => B : 7 hay a + ab : 7 ( đpcm )
a,15(3x-2y) chia het cho 17
15(3x-2y)-17(2x-y) chia het cho 17
45x-30y-34x+17y chia het cho 17
11x-13y chia het cho 17
b,5(4x+3y) chia het cho 13
5(4x+3y)-13(x+y) chia het cho 13
20x+15y-13x-13y chia het cho 13
7x+2y chia het cho 13
c,x+99y chia het cho 7
x+99y-98y chia het cho 7
x+y chia het cho 7
= 2010 ( 2010^2 - 1 )
= 2010 ( 2010-1 ) ( 2010+1 )
= 2010 * 2009 * 2011 chia hết cho 2011 ( đpcm )
20103 - 2010
= 2010( 20102 - 1 )
= 2010( 2010 - 1 )( 2010 + 1 )
= 2010.2009.2011 chia hết cho 2011 ( đpcm )
m^3 - m = (m^2-1)m = (m-1)(m+1)m là tích 3 stn liên tiếp -> chia hết cho 6
Em thử quy nạp nhé!
Với n = 1 thì mệnh đề đúng
Giả sử đúng với n = k thuộc N* tức là \(16^k-15k-1⋮225\) (giả thiết quy nạp)
Cần chứng minh nó đúng với n = k + 1. Tức là chứng minh \(16^{k+1}-15\left(k+1\right)-1⋮225\)
\(\Leftrightarrow16^k.16-15k-16⋮225\)
\(\Leftrightarrow16\left(16^k-15k-1\right)+15.15k⋮225\) (luôn đúng theo giả thiết quy nạp)
Ta có đpcm
n nguyên dương nên \(n\ge1\)
+) Xét n = 1 thì \(16^n-15n-1=0⋮225\)
Như vậy thì khẳng định đúng với n = 1
+) Giả sử khẳng định đúng với n = t tức là \(16^t-15t-1⋮225\)
Ta chứng minh khẳng định đúng với n = t + 1
Thật vậy: \(16^{t+1}-15\left(t+1\right)-1=16^t\left(15+1\right)-15t-15-1\)
\(=\left(16^t-15t-1\right)+15\left(16^t-1\right)\)
Ta có: \(16^t-1⋮16-1=15\)suy ra \(15\left(16^t-1\right)⋮225\)
Mà \(\left(16^t-15t-1\right)⋮225\)(Theo giả sử) nên \(16^{t+1}-15\left(t+1\right)-1⋮225\)
Vậy \(16^n-15n-1⋮225\forall n\inℕ^∗\)
500 a/e lớp 8 vào kb với mk
500+500=.......
400+400=.......
300+300=......
200+200=......
100+100=.......
500+500=1000
400+400=800
300+300=600
200+200=400
100+100=200
học tốt
3300 = ( 33 )100 = 27100
5200 = ( 52 )100 = 25100
Vì 27 + 25 = 52 ⋮ 13 ⇒ 27100 + 25100 ⋮ 13 ⇒ 3300 + 5200 ⋮ 13
Vậy 3300 + 5200 ⋮ 13