K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2019

A/  \(2\left(5x-3\right)=7x-18.\)

\(10x-6=7x-18\)

\(10-7x=6-18\)

\(3x=-12\)

\(x=-\frac{12}{3}=4\)

\(\Rightarrow S=\left\{4\right\}\)

B/  \(3x\left(x-2\right)+2x-4=0\)

\(3x\left(x-2\right)+2\left(x-2\right)=0\)

\(\left(x-2\right)\left(3x+2\right)=0\)

\(\orbr{\begin{cases}x-2=0\Rightarrow x=2\\3x+2=0\Rightarrow3x=-2\Rightarrow x=-\frac{2}{3}\end{cases}}\)

\(\Rightarrow S=\left\{2;-\frac{2}{3}\right\}\)

C/  \(\frac{x+2}{3}\frac{x-3}{2}=\frac{x+5}{4}\)

\(\frac{\left(x+2\right)\left(x-3\right)}{3.2}=\frac{x+5}{4}\)

\(\frac{x^2-3x+2x-6}{6}=\frac{x+5}{4}\)

\(\frac{x^2-x-6}{6}=\frac{x+5}{4}\)

\(\frac{2\left(x^2-x-6\right)}{12}=\frac{3\left(x+5\right)}{12}\)

\(\frac{2x^2-2x-12}{12}=\frac{3x+15}{12}\)

\(\Rightarrow2x^2-2x-12=3x+15\)

(chuyển vế r làm tiếp)

15 tháng 4 2019

Bài 1 : 

\(a,2\left(5x-3\right)=7x-18\)

\(\Leftrightarrow10x-6=7x-18\)

\(\Leftrightarrow10x-7x=6-18\)

\(\Leftrightarrow3x=-12\)

\(\Leftrightarrow x=-4\)

PT có nghiệm S = { -4 }

\(b,3x\left(x-2\right)+2x-4=0\)

\(\Leftrightarrow3x^2-6x+2x-4=0\)

\(\Leftrightarrow3x^2-4x-4=0\)

\(\Leftrightarrow3x^2-6x+2x-4=0\)

\(\Leftrightarrow3x\left(x-2\right)+2\left(x-2\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x+2=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=2\end{cases}}\)

KL : ............

\(c,\frac{x+2}{3}-\frac{x-3}{2}=\frac{x+5}{4}\)

\(\Leftrightarrow\frac{4\left(x+2\right)}{12}-\frac{6\left(x-3\right)}{12}=\frac{3\left(x+5\right)}{12}\)

\(\Leftrightarrow4x+8-6x+18=3x+15\)

\(\Leftrightarrow4x-6x-3x=-8-18+15\)

\(\Leftrightarrow x=-9\)

KL : .......

11 tháng 9 2019

TL:

\(\Leftrightarrow\)\(\frac{15+3x+12}{15}< \frac{15x-5x-15}{15}\)

\(\Leftrightarrow27+3x< 10x-15\)

\(\Leftrightarrow7x>42\)

\(\Leftrightarrow x>6\)

24 tháng 5 2021

Câu 1a : tự kết luận nhé 

\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)

Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)

\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)

c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)

\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0 

24 tháng 5 2021

1) 2(x + 3) = 5x - 4

<=> 2x + 6 = 5x - 4

<=> 3x = 10

<=> x = 10/3

Vậy x = 10/3 là nghiệm phương trình 

b) ĐKXĐ : \(x\ne\pm3\)

\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)

=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)

=> x + 3 - 2(x - 3) = 5 - 2x

<=> -x + 9 = 5 - 2x

<=> x = -4 (tm) 

Vậy x = -4 là nghiệm phương trình 

c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)

<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)

<=> 3(x + 1) \(\ge\)2(2x - 2)

<=> 3x + 3 \(\ge\)4x - 4

<=> 7 \(\ge\)x

<=> x \(\le7\)

Vậy x \(\le\)7 là nghiệm của bất phương trình 

Biểu diễn

-----------------------|-----------]|-/-/-/-/-/-/>

                           0             7

7 tháng 5 2019

a, Vì \(2+\frac{3-2x}{5}\)không nhỏ hơn \(\frac{x+3}{4}-x\)

\(\Rightarrow2+\frac{3-2x}{5}\ge\frac{x+3}{4}-x\)

Giải phương trình : 

\(2+\frac{3-2x}{5}\ge\frac{x+3}{4}-x\)

\(\Rightarrow\frac{40}{20}+\frac{4\left(3-2x\right)}{20}\ge\frac{5\left(x-3\right)}{20}-\frac{20x}{20}\)

\(\Rightarrow40+12-8x\ge5x-15-20x\)

\(\Rightarrow7x=67\)

\(\Rightarrow x\ge\frac{67}{7}\)

7 tháng 5 2019

b, \(\frac{2x+1}{6}-\frac{x-2}{9}>-3\)

\(\Rightarrow\frac{3\left(2x+1\right)}{18}-\frac{2\left(x-2\right)}{18}>\frac{-54}{18}\)

\(\Rightarrow6x+3-2x+4>-54\)

\(\Rightarrow4x>-61\)

\(\Rightarrow x>\frac{-61}{4}\)\(\left(1\right)\)

Và : \(x-\frac{x-3}{4}\ge3-\frac{x-3}{12}\)

\(\frac{12x}{12}-\frac{3\left(x-3\right)}{12}\ge\frac{36}{12}-\frac{x-3}{12}\)

\(\Rightarrow12x-3x+9\ge36-x+3\)

\(\Rightarrow10x\ge30\)

\(\Rightarrow x\ge3\)\(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}x>\frac{-61}{4}\\x\ge3\end{cases}\Rightarrow x>3}\)

Vậy với giá trị x > 3 thì x là nghiệm chung của cả 2 bất phương trình

2 tháng 6 2018

a) \(x^3+x^2+2x-16\ge0\)

\(\Leftrightarrow x^3-2x^2+3x^2-6x+8x-16\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)

Mà \(x^2+3x+8>x^2+3x+2,25=\left(x+1,5\right)^2\ge0\)

Cho nên \(x-2\ge0\)

\(\Leftrightarrow x\ge2\)

27 tháng 5 2018

a,x^3-2x^2+3x^2-6x+8x-16>=0

(x^2+3x+8)(x-2)>=0

x^2+3x+8>0

=> để lớn hơn hoac bang 0 thì x-2 phải>=0

=>x>=2

b,hình như là vô nghiệm ko chắc chắn lắm

NM
24 tháng 8 2021

không mất tổng quát ta giả sử 

\(a>b\)

ta có hai trường hợp 1: \(\hept{\begin{cases}x+a>0\\x+b>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-a\\x>-b\end{cases}\Leftrightarrow}}x>-b\)

trường hợp 2 : \(\hept{\begin{cases}x+a< 0\\x+b< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -a\\x< -b\end{cases}\Leftrightarrow}}x< -a\)

Vậy \(\orbr{\begin{cases}x>-b\\x< -a\end{cases}}\) tổng quát \(\orbr{\begin{cases}x>-min\left(a,b\right)\\x< -max\left(a,b\right)\end{cases}}\)

24 tháng 8 2021

Ta có : (x + a)(x + b) > 0

TH1 : \(\hept{\begin{cases}x+a>0\\x+b< 0\end{cases}}\Leftrightarrow-a< x< -b\)

TH2 : \(\hept{\begin{cases}x+a< 0\\x+b>0\end{cases}}\Leftrightarrow-b< x< -a\)

Nếu a < b => TH1 loại TH2 đúng

Nếu a > b => TH2 loại TH

Nếu a = b => bất phương trình luôn đúng khi \(x\ne a\)

17 tháng 12 2019

a) Phân thức xác định được \(\Leftrightarrow\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+5\ne0\end{cases}}\)

Vậy...

17 tháng 12 2019

b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

=> \(P=\frac{x\left(x^2+2x\right)+2\left(x-5\right)\left(x+5\right)+50-5x}{2x\left(x+5\right)}\)

=> \(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

=> \(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}=\frac{\left(x-1\right)}{2}\)

\(P=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

1 tháng 4 2020

cái cuối là =-4 nhé!

1 tháng 4 2020

\(\frac{x+2001}{5}+\frac{x+1999}{7}+\frac{x+1997}{9}+\frac{x+1995}{11}=-4\)

\(\Rightarrow\frac{x+2001}{5}+1+\frac{x+1999}{7}+1+\frac{x+1997}{9}+1+\frac{x+1995}{11}+1=0\)

\(\Rightarrow\frac{x+2006}{5}+\frac{x+2006}{7}+\frac{x+2006}{9}+\frac{x+2006}{11}=0\)

\(\Rightarrow\left(x+2006\right)\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}\right)=0\)

\(\Rightarrow x+2006=0\)vì \(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}>0\)

\(\Rightarrow x=-2006\)