K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2019

A/  \(2\left(5x-3\right)=7x-18.\)

\(10x-6=7x-18\)

\(10-7x=6-18\)

\(3x=-12\)

\(x=-\frac{12}{3}=4\)

\(\Rightarrow S=\left\{4\right\}\)

B/  \(3x\left(x-2\right)+2x-4=0\)

\(3x\left(x-2\right)+2\left(x-2\right)=0\)

\(\left(x-2\right)\left(3x+2\right)=0\)

\(\orbr{\begin{cases}x-2=0\Rightarrow x=2\\3x+2=0\Rightarrow3x=-2\Rightarrow x=-\frac{2}{3}\end{cases}}\)

\(\Rightarrow S=\left\{2;-\frac{2}{3}\right\}\)

C/  \(\frac{x+2}{3}\frac{x-3}{2}=\frac{x+5}{4}\)

\(\frac{\left(x+2\right)\left(x-3\right)}{3.2}=\frac{x+5}{4}\)

\(\frac{x^2-3x+2x-6}{6}=\frac{x+5}{4}\)

\(\frac{x^2-x-6}{6}=\frac{x+5}{4}\)

\(\frac{2\left(x^2-x-6\right)}{12}=\frac{3\left(x+5\right)}{12}\)

\(\frac{2x^2-2x-12}{12}=\frac{3x+15}{12}\)

\(\Rightarrow2x^2-2x-12=3x+15\)

(chuyển vế r làm tiếp)

15 tháng 4 2019

Bài 1 : 

\(a,2\left(5x-3\right)=7x-18\)

\(\Leftrightarrow10x-6=7x-18\)

\(\Leftrightarrow10x-7x=6-18\)

\(\Leftrightarrow3x=-12\)

\(\Leftrightarrow x=-4\)

PT có nghiệm S = { -4 }

\(b,3x\left(x-2\right)+2x-4=0\)

\(\Leftrightarrow3x^2-6x+2x-4=0\)

\(\Leftrightarrow3x^2-4x-4=0\)

\(\Leftrightarrow3x^2-6x+2x-4=0\)

\(\Leftrightarrow3x\left(x-2\right)+2\left(x-2\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x+2=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=2\end{cases}}\)

KL : ............

\(c,\frac{x+2}{3}-\frac{x-3}{2}=\frac{x+5}{4}\)

\(\Leftrightarrow\frac{4\left(x+2\right)}{12}-\frac{6\left(x-3\right)}{12}=\frac{3\left(x+5\right)}{12}\)

\(\Leftrightarrow4x+8-6x+18=3x+15\)

\(\Leftrightarrow4x-6x-3x=-8-18+15\)

\(\Leftrightarrow x=-9\)

KL : .......

15 tháng 4 2019

undefinedundefinedundefinedundefinedundefined

14 tháng 4 2018

\(a,2x-6< 0\Leftrightarrow2x>6\Leftrightarrow x>3\)

\(b,5x+2x< 4+25\Leftrightarrow7x< 29\Leftrightarrow x< \frac{29}{7}\)

\(c,-5x+6>8-10+8x\Leftrightarrow-5x-8x>8-10-6\)

\(-13x>-8\Leftrightarrow x< \frac{8}{13}\)

\(d,3x-12\le2-4x\Leftrightarrow3x+4x\le2+12\)

\(\Leftrightarrow7x\le14\Leftrightarrow x\le2\)

\(e,\frac{3\left(x-3\right)}{6}>\frac{2\left(2x-5\right)}{6}+\frac{6}{6}\Rightarrow3x-9>4x-10+6\)

\(\Leftrightarrow3x-4x>-4+9\Leftrightarrow x>-5\)

\(f,3\left(2x-3\right)>1+2\left(2+2x\right)\Leftrightarrow6x-9>1+4+4x\)

\(6x-4x>14\Leftrightarrow2x>14\Leftrightarrow x>7\)

Tự biểu diễn nha!

24 tháng 5 2021

Câu 1a : tự kết luận nhé 

\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)

Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)

\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)

c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)

\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0 

24 tháng 5 2021

1) 2(x + 3) = 5x - 4

<=> 2x + 6 = 5x - 4

<=> 3x = 10

<=> x = 10/3

Vậy x = 10/3 là nghiệm phương trình 

b) ĐKXĐ : \(x\ne\pm3\)

\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)

=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)

=> x + 3 - 2(x - 3) = 5 - 2x

<=> -x + 9 = 5 - 2x

<=> x = -4 (tm) 

Vậy x = -4 là nghiệm phương trình 

c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)

<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)

<=> 3(x + 1) \(\ge\)2(2x - 2)

<=> 3x + 3 \(\ge\)4x - 4

<=> 7 \(\ge\)x

<=> x \(\le7\)

Vậy x \(\le\)7 là nghiệm của bất phương trình 

Biểu diễn

-----------------------|-----------]|-/-/-/-/-/-/>

                           0             7

31 tháng 3 2020

17) \(ĐKXĐ:x\ne1\)

 \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)

\(\Leftrightarrow\frac{x^2+x+1-3x^2-2x^2+2x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow-4x^2+3x+1=0\)

\(\Leftrightarrow-\left(x-1\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\4x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-\frac{1}{4}\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{1}{4}\right\}\)

18) \(ĐKXĐ:x\ne1\)

 \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)

\(\Leftrightarrow\frac{x^2+x+1+2x^2-5-4x+4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow3x^2-3x=0\)

\(\Leftrightarrow3x\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=1\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{0\right\}\)

19) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\\x\ne\frac{1}{2}\end{cases}}\)

 \(\frac{x+4}{2x^3-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)

\(\Leftrightarrow\frac{x+4}{\left(2x-1\right)\left(x-2\right)}+\frac{x+1}{\left(2x-1\right)\left(x-3\right)}-\frac{2x+5}{\left(2x-1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\frac{x^2+x-12+x^2-x-2-2x^2-x+10}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}=0\)

\(\Leftrightarrow-x-4=0\)

\(\Leftrightarrow x=-4\)(TM)

Vậy tập nghiệm của phương trình là \(S=\left\{-4\right\}\)

20) \(ĐKXĐ:x\ne0\)

 \(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}-\frac{3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)

\(\Leftrightarrow\frac{x\left(x+1\right)\left(x^2-x+1\right)-x\left(x-1\right)\left(x^2+x+1\right)-3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)

\(\Leftrightarrow x^4+x-x^4+x-3=0\)

\(\Leftrightarrow2x-3=0\)

\(\Leftrightarrow x=\frac{3}{2}\)(TM)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{3}{2}\right\}\)

2 tháng 7 2020

\(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)

\(< =>\frac{5x-131}{19}=\frac{1631-52x-\frac{38x-684}{5}}{209}\)

\(< =>\left(5x-131\right)209=\left(1631-52x-\frac{38x-684}{5}\right)19\)

\(< =>55x-1441=1631-52x-\frac{38x-684}{5}\)

\(< =>3072-107x=\frac{38x-684}{5}\)

\(< =>\left(3072-107x\right)5=38x-684\)

\(< =>15360-535x-38x-684=0\)

\(< =>14676=573x< =>x=\frac{14676}{573}=\frac{4892}{191}\)

nghệm xấu thế 

2 tháng 7 2020

\(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)

\(< =>\frac{8x+176}{45}-\frac{41x+817}{45}=\frac{11x+415}{45}\)

\(< =>993-33x-11x-415=0\)

\(< =>578=44x< =>x=\frac{289}{22}\)

Câu 1: (3,0 điểm). Giải các phương trình:a) \(3x+5=2x+2\).b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\).c) \(\left|x-3\right|+1=2x-7\).Câu 2: (2,0 điểm). a) Giải bất phương trình và biểu diễn tập nghiệm trên trục số: \(5x-15>x+15\).b) Giải bất phương trình \(\frac{8-4x}{3}>\frac{12-x}{5}\). Từ đó tìm số nguyên x lớn nhất thỏa mãn bất phương trình trên.Câu 3: (1,0 điểm). Một người...
Đọc tiếp

Câu 1: (3,0 điểm). Giải các phương trình:

a) \(3x+5=2x+2\).

b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\).

c) \(\left|x-3\right|+1=2x-7\).

Câu 2: (2,0 điểm). 

a) Giải bất phương trình và biểu diễn tập nghiệm trên trục số: \(5x-15>x+15\).

b) Giải bất phương trình \(\frac{8-4x}{3}>\frac{12-x}{5}\). Từ đó tìm số nguyên x lớn nhất thỏa mãn bất phương trình trên.

Câu 3: (1,0 điểm). Một người đi xe máy từ A đến B với vận tốc 60 km/h, rồi quay trở về A với vận tốc 50 km/h. Biết rằng thời gian đi từ A đến B ít hơn thời gian lúc về là 48 phut. Tính quãng đường từ A đến B.

Câu 4: (3,0 điểm). Cho \(\Delta ABC\)nhọn, các đường cao AD, BE, CF cắt nhau tại H.

a) Chứng minh rằng \(\Delta AEB~\Delta AFC\). Từ đó suy ra: \(AF.AB=AE.AC\).

b) Chứng minh: \(HE.HB=HF.HC\)\(\widehat{BEF}=\widehat{BCF}\).

c) Chứng minh: \(\frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA}=1\).

Câu 5: (1,0 điểm).

a) Chứng minh: Với mọi a, b ta có: \(a^2+b^2+1\ge ab+a+b\).

b) Giải phương trình: \(\left(3x+4\right)\left(x+1\right)\left(6x+7\right)^2=6\).

 

5
8 tháng 5 2021

Câu 1: (3,0 điểm). Giải các phương trình:

a) \(3x+5=2x+2\).

\(\Leftrightarrow3x-2x=2-5\).

\(\Leftrightarrow x=-3\).

Vậy phương trình có tập nghiệm: \(S=\left\{-3\right\}\).

b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\left(ĐKXĐ:x\ne-1;x\ne2\right)\).

\(\Leftrightarrow\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\).

\(\Rightarrow x-5=4x-8+3x+3\).

\(\Leftrightarrow x-4x-3x=-8+3+5\).

\(\Leftrightarrow-6x=0\).

\(\Leftrightarrow x=0\)(thỏa mãn ĐKXĐ).

Vậy phương trình có tập nghiệm: \(S=\left\{0\right\}\).

8 tháng 5 2021

c) \(\left|x-3\right|+1=2x-7\)

- Xét \(x-3\ge0\Leftrightarrow x\ge3\). Do đó \(\left|x-3\right|=x-3\). Phương trình trở thành:

\(x-3+1=2x-7\).

\(\Leftrightarrow x-2=2x-7\).

\(\Leftrightarrow x-2x=-7+2\).

\(\Leftrightarrow-x=-5\).

\(\Leftrightarrow x=5\)(thỏa mãn).

- Xét \(x-3< 0\Leftrightarrow x< 3\)Do đó \(\left|x-3\right|=3-x\). Phương trình trở thành:

\(3-x+1=2x-7\).

\(\Leftrightarrow4-x=2x-7\).

\(-x-2x=-7-4\).

\(\Leftrightarrow-3x=-11\).

\(\Leftrightarrow x=\frac{-11}{-3}=\frac{11}{3}\)(loại).

Vậy phương trình có tập nghiệm: \(S=\left\{5\right\}\).

Câu 2: (2,0 điểm). 

a) \(5x-5>x+15\).

\(\Leftrightarrow5x-x>15+5\).

\(\Leftrightarrow4x>20\).

\(\Leftrightarrow x>5\).

Vậy bất phương trình có tập nghiệm: \(\left\{x|x>5\right\}\).

b) \(\frac{8-4x}{3}>\frac{12-x}{5}\).

\(\Leftrightarrow\frac{5\left(8-4x\right)}{15}>\frac{3\left(12-x\right)}{15}\).

\(\Leftrightarrow40-20x>36-3x\).

\(\Leftrightarrow-20x+3x>36-40\).

\(\Leftrightarrow-17x>-4\).

\(\Leftrightarrow x< \frac{4}{17}\)\(\Leftrightarrow x< 0\frac{4}{17}\).

\(\Rightarrow\)Số nguyên x lớn nhất thỏa mãn bất phương trình trên là: \(x=0\).

Vậy \(x=0\).

14 tháng 3 2020

a) \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)

<=> 1 - x + 3(x + 1) = 2x + 3

<=> 1 - x + 3x + 3 = 2x + 3

<=> 1 - x + 3x + 3 - 2x = 3

<=> 4 = 3 (vô lý)

=> pt vô nghiệm

b) ĐKXĐ: \(x\ne1;x\ne2\)

\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)

<=> (x - 2)(2 - x) - 5(x + 1)(2 - x) = 15(x - 2)

<=> 2x - x2 - 4 + 2x - 5x - 5x2 + 10 = 15x - 30

<=> -x + 4x2 - 14 = 15x - 30

<=> x - 4x2 + 14 = 15x - 30 

<=> x - 4x2 + 14 + 15x - 30 = 0

<=> 16x - 4x2 - 16 = 0

<=> 4(4x - x2 - 4) = 0

<=> -x2 + 4x - 4 = 0

<=> x2 - 4x + 4 = 0

<=> (x - 2)2 = 0

<=> x - 2 = 0

<=> x = 2 (ktm)

=> pt vô nghiệm 

c) xem bài 4 ở đây: Câu hỏi của gjfkm

d) ĐKXĐ: \(x\ne1;x\ne2;x\ne3\)

\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)

<=> \(\frac{x+4}{\left(x-1\right)\left(x-2\right)}+\frac{x+1}{\left(x-1\right)\left(x-3\right)}=\frac{2x+5}{\left(x-1\right)\left(x-3\right)}\)

<=> (x + 4)(x - 3) + (x + 1)(x - 2) = (2x + 5)(x - 2)

<=> x2 - 3x + 4x - 12 + x2 - 2x + x - 2 = 2x2 - 4x + 5x - 10

<=> 2x2 - 14 = 2x2 + x - 10

<=> 2x2 - 14 - 2x2 = x - 10

<=> -14 = x - 10

<=> -14 + 10 = x

<=> -4 = x

<=> x = -4

25 tháng 12 2019

a) \(\left(x-5\right)^2+\left(x^2-25\right)=0\)

\(\Leftrightarrow\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-5+x+5\right)=0\)

\(\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

b) \(\frac{x-2}{4}+\frac{2x-3}{3}=\frac{x-18}{6}\)

\(\Rightarrow\frac{3x-6}{12}+\frac{8x-12}{12}=\frac{2x-36}{12}\)

\(\Rightarrow\frac{11x-18}{12}=\frac{2x-36}{12}\)

\(\Rightarrow11x-18=2x-36\)

\(\Rightarrow11x-2x=18-36\)

\(\Rightarrow9x=-18\Rightarrow x=-2\)

c) \(\frac{1}{x-3}+\frac{x-3}{x+3}=\frac{5x-6}{x^2-9}\)

\(\Rightarrow\frac{x+3}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}=\frac{5x-6}{x^2-9}\)

\(\Rightarrow\frac{x+3}{\left(x+3\right)\left(x-3\right)}+\frac{x^2-6x+9}{\left(x+3\right)\left(x-3\right)}=\frac{5x-6}{x^2-9}\)

\(\Rightarrow\frac{x^2-5x+12}{x^2-9}=\frac{5x-6}{x^2-9}\)

\(\Rightarrow x^2-5x+12=5x-6\)

\(\Rightarrow x^2-10x+18=0\)

Giải biệt thức sẽ ra 2 nghiệm \(5+\sqrt{7}\)và \(5-\sqrt{7}\)

27 tháng 12 2019

Gửi Cool: Lần sau đừng quên tìm điều kiện nhé. Câu c. ĐK: x khác 3 và x khác -3