Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1a : tự kết luận nhé
\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)
Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)
c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)
\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0
1) 2(x + 3) = 5x - 4
<=> 2x + 6 = 5x - 4
<=> 3x = 10
<=> x = 10/3
Vậy x = 10/3 là nghiệm phương trình
b) ĐKXĐ : \(x\ne\pm3\)
\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)
=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)
=> x + 3 - 2(x - 3) = 5 - 2x
<=> -x + 9 = 5 - 2x
<=> x = -4 (tm)
Vậy x = -4 là nghiệm phương trình
c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)
<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)
<=> 3(x + 1) \(\ge\)2(2x - 2)
<=> 3x + 3 \(\ge\)4x - 4
<=> 7 \(\ge\)x
<=> x \(\le7\)
Vậy x \(\le\)7 là nghiệm của bất phương trình
Biểu diễn
-----------------------|-----------]|-/-/-/-/-/-/>
0 7
( x + 2 ) ( x2 - 3x + 5 ) = ( x + 2 )
<=> x2 - 3x + 5 = 1
<=> x2 - 3x + 4 = 0
<=> x2 - 3x + 9/4 + 7/4 = 0
<=> ( x - 3/2 )2 = - 7/4 ( mâu thuẫn )
=> Pt vô nghiệm
\(\frac{x}{x-3}>1\)<=> \(\frac{x}{x-3}-1>0\)
<=>\(\frac{x-\left(x-3\right)}{x-3}>0\)<=>\(\frac{3}{x-3}>0\)
<=> x - 3 > 0 <=> x > 3
a)
\(x=-2,\frac{3+i\sqrt{7}}{2},\frac{3-i\sqrt{7}}{2}\)
b) \(x>3\)
Ký hiệu khoảng:
\(\left(3,\infty\right)\)
A/ \(2\left(5x-3\right)=7x-18.\)
\(10x-6=7x-18\)
\(10-7x=6-18\)
\(3x=-12\)
\(x=-\frac{12}{3}=4\)
\(\Rightarrow S=\left\{4\right\}\)
B/ \(3x\left(x-2\right)+2x-4=0\)
\(3x\left(x-2\right)+2\left(x-2\right)=0\)
\(\left(x-2\right)\left(3x+2\right)=0\)
\(\orbr{\begin{cases}x-2=0\Rightarrow x=2\\3x+2=0\Rightarrow3x=-2\Rightarrow x=-\frac{2}{3}\end{cases}}\)
\(\Rightarrow S=\left\{2;-\frac{2}{3}\right\}\)
C/ \(\frac{x+2}{3}\frac{x-3}{2}=\frac{x+5}{4}\)
\(\frac{\left(x+2\right)\left(x-3\right)}{3.2}=\frac{x+5}{4}\)
\(\frac{x^2-3x+2x-6}{6}=\frac{x+5}{4}\)
\(\frac{x^2-x-6}{6}=\frac{x+5}{4}\)
\(\frac{2\left(x^2-x-6\right)}{12}=\frac{3\left(x+5\right)}{12}\)
\(\frac{2x^2-2x-12}{12}=\frac{3x+15}{12}\)
\(\Rightarrow2x^2-2x-12=3x+15\)
(chuyển vế r làm tiếp)
Bài 1 :
\(a,2\left(5x-3\right)=7x-18\)
\(\Leftrightarrow10x-6=7x-18\)
\(\Leftrightarrow10x-7x=6-18\)
\(\Leftrightarrow3x=-12\)
\(\Leftrightarrow x=-4\)
PT có nghiệm S = { -4 }
\(b,3x\left(x-2\right)+2x-4=0\)
\(\Leftrightarrow3x^2-6x+2x-4=0\)
\(\Leftrightarrow3x^2-4x-4=0\)
\(\Leftrightarrow3x^2-6x+2x-4=0\)
\(\Leftrightarrow3x\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+2=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=2\end{cases}}\)
KL : ............
\(c,\frac{x+2}{3}-\frac{x-3}{2}=\frac{x+5}{4}\)
\(\Leftrightarrow\frac{4\left(x+2\right)}{12}-\frac{6\left(x-3\right)}{12}=\frac{3\left(x+5\right)}{12}\)
\(\Leftrightarrow4x+8-6x+18=3x+15\)
\(\Leftrightarrow4x-6x-3x=-8-18+15\)
\(\Leftrightarrow x=-9\)
KL : .......
40x-20+6x+18 (lớn hơn hoặc bằng ) 84x+36 - 96+8x
rồi giải bt @@:
x (bé hơn hoặc bằng) -(29:23)
a, Vì \(2+\frac{3-2x}{5}\)không nhỏ hơn \(\frac{x+3}{4}-x\)
\(\Rightarrow2+\frac{3-2x}{5}\ge\frac{x+3}{4}-x\)
Giải phương trình :
\(2+\frac{3-2x}{5}\ge\frac{x+3}{4}-x\)
\(\Rightarrow\frac{40}{20}+\frac{4\left(3-2x\right)}{20}\ge\frac{5\left(x-3\right)}{20}-\frac{20x}{20}\)
\(\Rightarrow40+12-8x\ge5x-15-20x\)
\(\Rightarrow7x=67\)
\(\Rightarrow x\ge\frac{67}{7}\)
b, \(\frac{2x+1}{6}-\frac{x-2}{9}>-3\)
\(\Rightarrow\frac{3\left(2x+1\right)}{18}-\frac{2\left(x-2\right)}{18}>\frac{-54}{18}\)
\(\Rightarrow6x+3-2x+4>-54\)
\(\Rightarrow4x>-61\)
\(\Rightarrow x>\frac{-61}{4}\)\(\left(1\right)\)
Và : \(x-\frac{x-3}{4}\ge3-\frac{x-3}{12}\)
\(\frac{12x}{12}-\frac{3\left(x-3\right)}{12}\ge\frac{36}{12}-\frac{x-3}{12}\)
\(\Rightarrow12x-3x+9\ge36-x+3\)
\(\Rightarrow10x\ge30\)
\(\Rightarrow x\ge3\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}x>\frac{-61}{4}\\x\ge3\end{cases}\Rightarrow x>3}\)
Vậy với giá trị x > 3 thì x là nghiệm chung của cả 2 bất phương trình
\(\frac{3x^2-7x+5}{x^2-x-x}-x+\frac{1}{x+1}< 0\Leftrightarrow\frac{x^2-6x+11}{\left(x-2\right)\left(x+1\right)}< 0\Leftrightarrow\frac{\left(x-3\right)^2+2}{\left(x-2\right)\left(x+1\right)}< 0\)
=> (x-2)(x+1)<0 ( vì (x-3)^2+2>0 lđ)
lại có x+1>x-2 => x-2<0 và x+1>0
=> -1<x<2
học tốt
Cho mình làm lại nha:
\(\frac{3x^2-7x+5}{\left(x+1\right)\left(x-2\right)}< \frac{2x+2-1}{x+1}.\)
\(\Leftrightarrow\frac{3x^2-7x+5}{\left(x+1\right)\left(x-2\right)}-\frac{2x+1}{x+1}< 0.\)
\(\Leftrightarrow\frac{3x^2-7x+5-\left(2x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}< 0.\)
\(\Leftrightarrow\frac{3x^2-7x+5-2x^2+4x-x+2}{\left(x+1\right)\left(x-2\right)}< 0.\)
\(\Leftrightarrow\frac{x^2-4x+4+3}{\left(x+1\right)\left(x-2\right)}< 0.\)
\(\Leftrightarrow\frac{\left(x-2\right)^2+3}{\left(x+1\right)\left(x-2\right)}< 0\Leftrightarrow\left(x+1\right)\left(x-2\right)< 0.\)
ta có x+1>x-2 => x+1>0;x-2<0 => -1<x<2
đọc lộn xíu xin lỗi nha
học tốt
\(\text{ĐKXĐ : }x\notin\left\{0;-1;-2;-3\right\}\). Ta biến đổi phương trình như sau :
\(\frac{5}{x}+\frac{2}{x+3}=\frac{4}{x+1}+\frac{3}{x+2}\)
\(\Leftrightarrow\left(\frac{5}{x}+1\right)+\left(\frac{2}{x+3}+1\right)=\left(\frac{4}{x+1}+1\right)+\left(\frac{3}{x+2}+1\right)\)
\(\Leftrightarrow\frac{5+x}{x}+\frac{5+x}{x+3}=\frac{5+x}{x+1}+\frac{5+x}{x+2}\)
\(\Leftrightarrow(5+x)\left(\frac{1}{x}+\frac{1}{x+3}-\frac{1}{x+1}-\frac{1}{x+2}\right)=0\)
\(\Leftrightarrow5+x=0\text{ (1) hoặc }\frac{1}{x}+\frac{1}{x+3}-\frac{1}{x+1}-\frac{1}{x+2}=0\text{ (2) }\).
Ta có :
\(\left(1\right)\Leftrightarrow x=-5\);
\(\left(2\right)\Leftrightarrow\frac{1}{x}+\frac{1}{x+3}=\frac{1}{x+1}+\frac{1}{x+2}\Leftrightarrow\frac{2x+3}{x\left(x+3\right)}=\frac{2x+3}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow\left(2x+3\right)\left(\frac{1}{x^2+3x}-\frac{1}{x^2+3x+2}\right)=0\)
\(\Leftrightarrow2x+3=0\text{ hoặc }\frac{1}{x^2+3x}-\frac{1}{x^2+3x+2}=0\).
- \(2x+3=0\Leftrightarrow x=-\frac{3}{2}\);
- \(\frac{1}{x^2-3x}-\frac{1}{x^2+3x+2}=0\). Dễ thấy phương trình này vô nghiệm.
Tóm lại, phương trình đã cho có tập nghiệm \(S=\left\{-5;-\frac{3}{2}\right\}\).
\(ĐKXĐ:x\ne2;4\)
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=3\frac{1}{5}\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2=\frac{16}{5}\left(x-2\right)\left(x-4\right)\)
\(\Leftrightarrow x^2-7x+12+x^2-4x+4=\frac{16}{5}\left(x^2-6x+8\right)\)
\(\Leftrightarrow2x^2-11x+16=\frac{16}{5}x^2-\frac{96}{5}x+\frac{128}{5}\)
\(\Leftrightarrow\frac{6}{5}x^2-\frac{41}{5}x+\frac{48}{5}=0\)
\(\Leftrightarrow6x^2-41x+48=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{16}{3}\\x=\frac{3}{2}\end{cases}}\)
TL:
\(\Leftrightarrow\)\(\frac{15+3x+12}{15}< \frac{15x-5x-15}{15}\)
\(\Leftrightarrow27+3x< 10x-15\)
\(\Leftrightarrow7x>42\)
\(\Leftrightarrow x>6\)