Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/\(x-\dfrac{5}{7}-\dfrac{13}{14}=1\)
\(x=1+\dfrac{5}{7}+\dfrac{13}{14}\)
\(x=\dfrac{14}{14}+\dfrac{10}{14}+\dfrac{13}{14}\)
\(x=\dfrac{37}{14}\)
Vậy \(x=\dfrac{37}{14}\)
b/\(\dfrac{3}{5}+x+1\dfrac{1}{5}=\dfrac{11}{3}\)
\(x+\dfrac{3}{5}+\dfrac{6}{5}=\dfrac{11}{3}\)
\(x+\dfrac{9}{5}=\dfrac{11}{3}\)
\(x=\dfrac{11}{3}-\dfrac{9}{5}\)
\(x=\dfrac{55}{15}-\dfrac{27}{15}\)
\(x=\dfrac{28}{15}\)
Vậy \(x=\dfrac{28}{15}\)
#kễnh
a) \(x-\dfrac{5}{7}-\dfrac{13}{14}=1\)
\(x-\dfrac{23}{14}=1\)
\(x=1+\dfrac{23}{14}\)
\(x=\dfrac{37}{14}\)
b) \(\dfrac{3}{5}+x+1\dfrac{1}{5}=\dfrac{11}{3}\)
\(x+1+\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{11}{3}\)
\(x+\dfrac{9}{5}=\dfrac{11}{3}\)
\(x=\dfrac{11}{3}-\dfrac{9}{5}\)
\(x=\dfrac{28}{15}\)
=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)
a; A = \(\dfrac{4026\times2014+4030}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2014+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-2013\times2+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-4026+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-2011\right)}{2013\times2016-2011}\)
A = 2
a) \(\dfrac{2}{3}+\dfrac{3}{5}=\dfrac{10}{15}+\dfrac{9}{15}=\dfrac{19}{15}\)
a) \(\dfrac{7}{12}-\dfrac{2}{7}+\dfrac{1}{12}=\dfrac{2}{3}-\dfrac{2}{7}=\dfrac{14}{21}-\dfrac{6}{21}=\dfrac{8}{21}\)
`2/(1xx3)+2/(3xx5)+2/(5xx7)+...+2/(99xx101)` đề phải ntn chứ mà nhỉ
`=1/1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101`
`=1/1-1/101`
`=101/101-1/101`
`=100/101`
(Sửa phần 3 / 3 x 5 = 2 / 3 x 5)
\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{99\times101}\)
Ta có: \(=2\times\left(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{99\times101}\right)\)
\(=2\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=2\times\left(1-\dfrac{1}{101}\right)\)
\(=2\times\dfrac{100}{101}\)
\(=\dfrac{200}{101}\)
Giải:
\(B=\dfrac{3}{3\times5}+\dfrac{3}{5\times7}+\dfrac{3}{7\times9}+...+\dfrac{3}{48\times50}\)
\(B=\dfrac{3}{2}\times\left(\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+...+\dfrac{2}{48\times50}\right)\)
\(B=\dfrac{3}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
\(B=\dfrac{3}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{50}\right)\)
\(B=\dfrac{3}{2}\times\dfrac{47}{150}\)
\(B=\dfrac{47}{100}\)
Chúc em học tốt!
\(=\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{10}-\dfrac{1}{10}-\dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{13}\)
=1/2+1/13
=15/26
Bạn làm sai rồi