K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:

\(B=\dfrac{3}{3\times5}+\dfrac{3}{5\times7}+\dfrac{3}{7\times9}+...+\dfrac{3}{48\times50}\) 

\(B=\dfrac{3}{2}\times\left(\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+...+\dfrac{2}{48\times50}\right)\) 

\(B=\dfrac{3}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\) 

\(B=\dfrac{3}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{50}\right)\)

\(B=\dfrac{3}{2}\times\dfrac{47}{150}\) 

\(B=\dfrac{47}{100}\) 

Chúc em học tốt!

8 tháng 8 2023

`2/(1xx3)+2/(3xx5)+2/(5xx7)+...+2/(99xx101)` đề phải ntn chứ mà nhỉ

`=1/1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101`

`=1/1-1/101`

`=101/101-1/101`

`=100/101`

8 tháng 8 2023

(Sửa phần 3 / 3 x 5 = 2 / 3 x 5)

\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{99\times101}\)

Ta có: \(=2\times\left(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{99\times101}\right)\)

\(=2\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=2\times\left(1-\dfrac{1}{101}\right)\)

\(=2\times\dfrac{100}{101}\)

\(=\dfrac{200}{101}\)

 

11 tháng 2 2022

917749738461936926399639748776398646491639394748947630373937366

\(I=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{199\cdot201}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{199\cdot201}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{199}-\dfrac{1}{201}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{200}{201}=\dfrac{100}{201}\)

AH
Akai Haruma
Giáo viên
6 tháng 10 2021

Lời giải:

\(2\times I=\frac{2}{1\times 3}+\frac{2}{3\times 5}+\frac{2}{5\times 7}+...+\frac{2}{199\times 201}\)

\(=\frac{3-1}{1\times 3}+\frac{5-3}{3\times 5}+\frac{7-5}{5\times 7}+....+\frac{201-199}{199\times 201}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{199}-\frac{1}{201}\)

\(=1-\frac{1}{201}=\frac{200}{201}\)

\(I=\frac{200}{201}:2=\frac{100}{201}\)

7 tháng 10 2021

\(K=\dfrac{4}{1\times3}+\dfrac{4}{3\times5}+...+\dfrac{4}{299\times301}\)

\(=2\times\left(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+...+\dfrac{2}{299\times301}\right)\)

\(=2\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{299}-\dfrac{1}{301}\right)\)

\(=2\times\left(1-\dfrac{1}{301}\right)=2\times\dfrac{300}{301}=\dfrac{600}{301}\)

\(K=\dfrac{4}{1\cdot3}+\dfrac{4}{3\cdot5}+...+\dfrac{4}{299\cdot301}\)

\(=2\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{299}-\dfrac{1}{301}\right)\)

\(=2\cdot\dfrac{300}{301}=\dfrac{600}{301}\)

22 tháng 10 2023

\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{13\times15}+\dfrac{2}{15\times17}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{17}\)

\(=1-\dfrac{1}{17}\)

\(=\dfrac{16}{17}\)

22 tháng 10 2023

\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{15\cdot17}\)

\(=2-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{17}\)

\(=2-\dfrac{1}{17}\)

\(=\dfrac{33}{17}\)

27 tháng 5 2022

x là dấu nhân nha mn

24 tháng 7 2016

B=2/3x5 + 2/5x7 + 2/7x9 + ...+2/99x101

B= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 -1/9 + ... + 1/99 - 1/101

B= 1/3 - 1/101

B=98/303

( k mk nhé ! Cách làm câu a và b của mk đều đúng 100% đấy ! Dạng này mk học từ lâu rồi ! )

24 tháng 7 2016

a, A = 1/2x3+ 1/ 3x4 + 1/4x5 + 1/5x6 + ... + 1/99x100

    A= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 -1/5 + 1/5 - 1/6 + ... + 1/99 -1/100

    A= 1/2 -1/100

    A= 49 / 100

29 tháng 7 2015

A = 3/1.3 + 3/3.5 + 3/5.7 + 3/7.9 + ... + 3/97.99

A = 3/2 . ( 2/1.3 + 2/3.5 + 2/5.7 + 2/7.9 + .... + 2/97 - 2/99

A = 3/2 . ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/97 - 1/99 )

A = 3/2 . ( 1 - 1/99 )

A = 3/2 . 98/99

A = 49/33

29 tháng 7 2015

b) dãy số không có quy luật==> bạn xem lại đề

c) \(C=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\frac{1}{3\times4}-\frac{1}{4\times5}+...+\frac{1}{50\times51}-\frac{1}{51\times52}\right)\)

\(C=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{51\times52}\right)=\frac{1}{2}\times\frac{2650}{5408}=\frac{1325}{5408}\)

5 tháng 8 2018

\(=\frac{1}{3.5}+\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{113.115}\right)\)

\(=\frac{1}{15}+\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{113}-\frac{1}{115}\right)\)

\(=\frac{1}{15}+\frac{1}{3}-\frac{1}{115}=\frac{9}{23}\)