\(\frac{10^8+2}{10^8-1}\)

         và  N=\(\frac{10...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

M=\(\frac{10^8-1+3}{10^8-1}\)=1+\(\frac{3}{10^8-1}\)

N=\(\frac{10^8-3+3}{10^8-3}\)=1+\(\frac{3}{10^8-3}\)

Ta có:\(\frac{3}{10^8-1}\)<\(\frac{3}{10^8-3}\) NÊN M<N

24 tháng 3 2017

M=N(1,00000003)

29 tháng 4 2016

Ta thấy \(\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)

\(\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)

Vậy là em so sánh được rồi nhé :)

13 tháng 1 2019

\(N=\frac{6}{10^{2015}}+\frac{8}{10^{2016}}=M=\frac{8}{10^{2015}}+\frac{6}{10^{2016}}\)

Hk tốt

k nhé

13 tháng 1 2019

Ta có :N= \(\frac{6}{10^{2015}}+\frac{8}{10^{2016}}=\frac{6}{10^{2015}}+\frac{6}{10^{2016}}+\frac{2}{10^{2016}}\)

          M=\(\frac{8}{10^{2015}}+\frac{6}{10^{2016}}=\frac{6}{10^{2015}}+\frac{6}{10^{2016}}+\frac{2}{10^{2015}}\)

         Ta Xét:                   \(\frac{2}{10^{2016}},\frac{2}{10^{2015}}\)

          Vì   102016>102015

          Nên:     \(\frac{2}{10^{2016}}< \frac{2}{10^{2015}}\)

          Do đó :                                 N<M

25 tháng 3 2017

mk giải cho câu A rồi tự suy mấy câu khác nhé!

ta có : A = 10^8 + 2/10^8 - 1

     => A = 10^8 - 1 + 3/10^8 - 1

     => A = 1+ 3/10^8 - 1

          B = 10^8/10^8 - 3

    =>  B = 10^8 - 3 + 3/10^8 - 3

    =>  B = 1+ 3/10^8 - 3

vì 3/10^8 - 1 < 3/10^8 - 3

=> 1 + 3/10^8 - 1 < 1 + 3/10^8 - 3

=> A < B

vậy A < B

cách này cô dạy mk đó

22 tháng 7 2018

Ta có: \(\frac{n}{n+1}< 1\)

\(\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+1+2}\)

\(\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+3}\)

\(\Rightarrow A< B\)

b. mình ko biết làm 

c. mình cũng ko biết làm

d.Ta có :\(\frac{10^{1993}+1}{10^{1992}+1}>1\)

\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}\)

\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}.10+10.1}{10^{1991}.10+10.1}\)

\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)

\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}+1}{10^{1991}+1}\)

\(\Rightarrow A>B\)

Chúc bạn học tốt nhé

30 tháng 5 2015

\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)

\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)

Vì \(\frac{3}{10^8-1}<\frac{3}{10^8-3}\) nên A < B

\(\frac{10^8+2}{10^8-1}=1+\frac{3}{10^8-1}<1+\frac{3}{10^8-3}=\frac{10^8}{10^8-3}\)

vậy A<B

5 tháng 4 2017

\(M=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)

\(N=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)

Ta có \(10^8-7>10^7-8\) \(=>\frac{13}{10^8-7}< \frac{13}{10^7-8}\) \(=>M< N\)

Vậy M<N

5 tháng 4 2017

n<m nha ban

chuc ban hoc gioi

tk cho minh nha

20 tháng 4 2017

trừ A cho 3/(108-1)   (1)  = 1

trừ B cho 3/(108-3)    (2) = 1

dễ thấy (1)>(2) suy ra A>B

12 tháng 7 2016

Đề hình như sai rùi bn, ở A mẫu phải là 108 - 1 chứ

Áp dụng a/b < 1 => a/b < a+m/b+m (a;b;m thuộc N*)

Ta có:

\(B=\frac{10^8}{10^8-3}< \frac{10^8+2}{10^8-3+2}=\frac{10^8+2}{10^8-1}=A\)

=> B < A