Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{10^{2015}-1}{10^{2016}^{ }-1}=\frac{10^{2015}}{10^{2016}}=\frac{1}{1},B=\frac{10^{2014}-1}{10^{2015}-1}=\frac{10^{2014}}{10^{2015}}=\frac{1}{1}A=B\Rightarrow\)
10A=(10^2014+1).10/10^2015+1=10^2015+10/10^2015+1=10^2015+1+9/10^2015+1=1+(9/10^2015+1) 10B=(10^2015+1).10/10^2016+1=10^2016+10/10^2016+1=10^2016+1+9/10^2016+1=1+(9/10^2016+1) Vì 9/10^2015+1>9/10^2016+1 nên 10A>10B .Từ đó suy ra A>B
Ta có công thức :
\(\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(B=\frac{10^{2016}+1}{10^{2015}+1}>\frac{10^{2016}+1+9}{10^{2015}+1+9}=\frac{10^{2016}+10}{10^{2015}+10}=\frac{10\left(10^{2015}+1\right)}{10\left(10^{2014}+1\right)}=\frac{10^{2015}+1}{10^{2014}+1}=A\)
\(\Rightarrow\)\(B>A\) hay \(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
\(N=\frac{6}{10^{2015}}+\frac{8}{10^{2016}}=M=\frac{8}{10^{2015}}+\frac{6}{10^{2016}}\)
Hk tốt
k nhé
Ta có :N= \(\frac{6}{10^{2015}}+\frac{8}{10^{2016}}=\frac{6}{10^{2015}}+\frac{6}{10^{2016}}+\frac{2}{10^{2016}}\)
M=\(\frac{8}{10^{2015}}+\frac{6}{10^{2016}}=\frac{6}{10^{2015}}+\frac{6}{10^{2016}}+\frac{2}{10^{2015}}\)
Ta Xét: \(\frac{2}{10^{2016}},\frac{2}{10^{2015}}\)
Vì 102016>102015
Nên: \(\frac{2}{10^{2016}}< \frac{2}{10^{2015}}\)
Do đó : N<M