Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{10^{2015}-1}{10^{2016}^{ }-1}=\frac{10^{2015}}{10^{2016}}=\frac{1}{1},B=\frac{10^{2014}-1}{10^{2015}-1}=\frac{10^{2014}}{10^{2015}}=\frac{1}{1}A=B\Rightarrow\)
b, 2000A = \(\frac{2000\left(2000^{2015}+1\right)}{2000^{2016}+1}\)
= \(\frac{2000^{2016}+2000}{2000^{2016}+1}\)
= \(\frac{\left(2000^{2016}+1\right)+1999}{2000^{2016}+1}\)
= \(\frac{2000^{2016}+1}{2000^{2016}+1}\) + \(\frac{1999}{2000^{2016}+1}\)
= 1 + \(\frac{1999}{2000^{2016}+1}\)
2000B = \(\frac{2000\left(2000^{2014}+1\right)}{2000^{2015}+1}\)
= \(\frac{2000^{2015}+2000}{2000^{2015}+1}\)
= \(\frac{\left(2000^{2015}+1\right)+1999}{2000^{2015}+1}\)
= \(\frac{2000^{2015}+1}{2000^{2015}+1}\) + \(\frac{1999}{2000^{2015}+1}\)
= 1 + \(\frac{1999}{2000^{2015}+1}\)
So sanh
câu b tiếp
So sánh 2000A với 2000B
Vì \(\frac{1999}{2000^{2016}+1}\) < \(\frac{1999}{2000^{2015}+1}\)
→ 2000A< 2000B
→ A<B
sách 6,7,8 có 2 bài này nè. mk k bt ghi ps nên mk ko gửi đc sorry nha. Hhh
a)\(A=\frac{10^{2014}+2016}{10^{2015}+2016}=>10A=\frac{10^{2015}+20160}{10^{2015}+2016}=1+\frac{18144}{10^{2015}+2016}\left(1\right)\)
\(B=\frac{10^{2015}+2016}{10^{2016}+2016}=>10B=\frac{10^{2016}+20160}{10^{2016}+2016}=1+\frac{18144}{10^{2016}+2106}\left(2\right)\)
từ 1 zà 2
=> 10A>10B
=>A>B
10A=(10^2014+1).10/10^2015+1=10^2015+10/10^2015+1=10^2015+1+9/10^2015+1=1+(9/10^2015+1) 10B=(10^2015+1).10/10^2016+1=10^2016+10/10^2016+1=10^2016+1+9/10^2016+1=1+(9/10^2016+1) Vì 9/10^2015+1>9/10^2016+1 nên 10A>10B .Từ đó suy ra A>B
\(N=\frac{6}{10^{2015}}+\frac{8}{10^{2016}}=M=\frac{8}{10^{2015}}+\frac{6}{10^{2016}}\)
Hk tốt
k nhé
Ta có :N= \(\frac{6}{10^{2015}}+\frac{8}{10^{2016}}=\frac{6}{10^{2015}}+\frac{6}{10^{2016}}+\frac{2}{10^{2016}}\)
M=\(\frac{8}{10^{2015}}+\frac{6}{10^{2016}}=\frac{6}{10^{2015}}+\frac{6}{10^{2016}}+\frac{2}{10^{2015}}\)
Ta Xét: \(\frac{2}{10^{2016}},\frac{2}{10^{2015}}\)
Vì 102016>102015
Nên: \(\frac{2}{10^{2016}}< \frac{2}{10^{2015}}\)
Do đó : N<M