Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\dfrac{\sqrt{\dfrac{4x^2+4x+1}{x}}}{\sqrt{x}\cdot\left|2x^2-x-1\right|}=\dfrac{\left|2x+1\right|}{\sqrt{x}}\cdot\dfrac{1}{\sqrt{x}\cdot\left|\left(x-1\right)\left(2x+1\right)\right|}\)
\(=\dfrac{1}{x\left|x-1\right|}\)
a) \(\sqrt[]{x^2-2x+4}=2x-2\)
\(\Leftrightarrow\sqrt[]{x^2-2x+4}=2\left(x-1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x-1\right)\ge0\\x^2-2x+4=4\left(x-1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2-2x+4=4x^2-8x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\3x^2-6x=0\end{matrix}\right.\) \(\left(1\right)\)
Giải pt \(3x^2-6x=0\)
\(\Leftrightarrow3x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=2\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x=2\)
c) \(\sqrt{x^2-3x+2}=\sqrt[]{x-1}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2-3x+2=x-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2-4x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x=1\cup x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
a)
\(M=2+\sqrt{\left(2x\right)^2-2.2x.3+3^2}\)
\(\Rightarrow M=2+\sqrt{\left(2x-3\right)^2}\)
\(\Rightarrow M=2+2x-3\)
\(\Rightarrow M=2x-1\)
b)
(+) x=5/2
=> \(M=2.\frac{5}{2}-1=5-1=4\)
(+) x= - 1/5
=> \(M=2.\frac{\left(-1\right)}{5}-1=-\frac{2}{5}-1=-\frac{7}{5}\)
a/ ĐKXĐ: ....
\(\Leftrightarrow2x^2+2x+4+2x-4=5\sqrt{\left(x-2\right)\left(x^2+x+2\right)}\)
\(\Leftrightarrow2\left(x^2+x+2\right)+2\left(x-2\right)=5\sqrt{\left(x-2\right)\left(x^2+x+4\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+2}=a\\\sqrt{x-2}=b\end{matrix}\right.\)
\(\Leftrightarrow2a^2+2b^2=5ab\)
\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+2}=2\sqrt{x-2}\\2\sqrt{x^2+x+2}=\sqrt{x-2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=4\left(x-2\right)\\4\left(x^2+x+2\right)=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+10=0\\4x^2+3x+10=0\end{matrix}\right.\)
Phương trình vô nghiệm
b/ ĐKXĐ: ....
\(\Leftrightarrow2x^2-x+1=\sqrt{4x^4+4x^2+1-4x^2}\)
\(\Leftrightarrow2x^2-x+1=\sqrt{\left(2x^2+1\right)^2-\left(2x\right)^2}\)
\(\Leftrightarrow2x^2-x+1=\sqrt{\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)}\)
\(\Leftrightarrow\frac{3}{4}\left(2x^2-2x+1\right)+\frac{1}{4}\left(2x^2+2x+1\right)=\sqrt{\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2-2x+1}=a\\\sqrt{2x^2+2x+1}=b\end{matrix}\right.\)
\(\Leftrightarrow3a^2+b^2=4ab\Leftrightarrow3a^2-4ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(3a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\3a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x^2-2x+1}=\sqrt{2x^2+2x+1}\\3\sqrt{2x^2-2x+1}=\sqrt{2x^2+2x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-2x+1=2x^2+2x+1\\9\left(2x^2-2x+1\right)=2x^2+2x+1\end{matrix}\right.\)
\(=\frac{\left(x+1\right)^2}{\left(x-1\right)^2}:\frac{2\left(x+1\right)^2}{4\left(x-1\right)^2}=\frac{\left(x+1\right)^2}{\left(x-1\right)^2}.\frac{4\left(x-1\right)^2}{2\left(x+1\right)^2}=2\)