K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

a)

\(M=2+\sqrt{\left(2x\right)^2-2.2x.3+3^2}\)

\(\Rightarrow M=2+\sqrt{\left(2x-3\right)^2}\)

\(\Rightarrow M=2+2x-3\)

\(\Rightarrow M=2x-1\)

b)

(+) x=5/2

=> \(M=2.\frac{5}{2}-1=5-1=4\)

(+) x= - 1/5

=> \(M=2.\frac{\left(-1\right)}{5}-1=-\frac{2}{5}-1=-\frac{7}{5}\)

11 tháng 8 2016

ê căn (2x-3)^2=|2x-3| xét 2 th ra nhé

11 tháng 8 2016

câu b)  \(\sqrt{-2}\) không xác định

11 tháng 8 2016

a) \(A=4x-\sqrt{8}-\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)

\(=4x-\sqrt{8}-\frac{\sqrt{x^2\left(x+2\right)}}{\sqrt{x+2}}=4x-\sqrt{8}-x=3x-\sqrt{8}\)

b) \(x=\sqrt{-2}\) (không thỏa mãn)

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

d) Để biểu thức có nghĩa thì:

\(\left\{\begin{matrix} x+3\geq 0\\ x^2-9\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+3\geq 0\\ (x-3)(x+3)\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x+3=0\\ x-3\geq 0 \end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=-3\\ x\geq 3\end{matrix}\right.\)

e) Để biểu thức có nghĩa thì:

\(\left\{\begin{matrix} x-2\geq 0\\ x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 2\\ x\neq 5\end{matrix}\right.\)

f) Để biểu thức có nghĩa thì:

\(\left\{\begin{matrix} x^2-9\neq 0\\ 5-2x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-3)(x+3)\neq 0\\ x\leq \frac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} x\neq \pm 3\\ x\leq \frac{5}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq -3\\ x\leq \frac{5}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

a) Để biểu thức có nghĩa thì:

$-x^2+4x-5\geq 0$

$\Leftrightarrow x^2-4x+5\leq 0$

$\Leftrightarrow (x-2)^2+1\leq 0$

$\Leftrightarrow (x-2)^2\leq -1< 0$ (vô lý). Do đó không tồn tại $x$ để biểu thức có nghĩa.

b) Để biểu thức có nghĩa thì:

\(x^2+2x+2\geq 0\)

\(\Leftrightarrow (x+1)^2+1\geq 0\) (luôn đúng với mọi $x\in\mathbb{R}$)

Vậy mọi giá trị $x\in\mathbb{R}$ thì biểu thức có nghĩa

c) Để biểu thức có nghĩa thì:

$4x^2-12x+9>0\Leftrightarrow (2x-3)^2>0\Leftrightarrow 2x-3\neq 0$

$\Leftrightarrow x\neq \frac{3}{2}$

Vô xem bài 14 để tham khảo nha bạn: https://www.slideshare.net/toanlv1987qn/cu-i-trong-cc-tuyn-sinh-vo-10-mn-ton-h-ni

4 tháng 7 2015

đk: x>=0; x khác 3

a) \(P=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-3}=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(P=\frac{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)

b) \(P=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)

ta có: \(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\frac{2}{\sqrt{x}+2}\le1\Leftrightarrow1+\frac{2}{\sqrt{x}+2}\le2\Rightarrow MaxP=2\Rightarrow x=0\)

29 tháng 7 2019

a.

\(B=\left(\frac{x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\\ =\left(\frac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\\ =\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}}\\ =\frac{\sqrt{x}+1}{\sqrt{x}+3}\)

b. Ta có :

\(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\\ =\sqrt{25+2\cdot5\cdot\sqrt{2}+2}-\sqrt{16+2\cdot4\cdot\sqrt{2}+2}\\ =\sqrt{\left(5+\sqrt{2}\right)^2}-\sqrt{\left(4+\sqrt{2}\right)^2}\\ =5+\sqrt{2}-4-\sqrt{2}=1\)

\(B=\frac{\sqrt{x}+1}{\sqrt{x}+3}=\frac{1+1}{1+3}=\frac{2}{4}=\frac{1}{2}\)

c. Giả sử B>\(\frac{1}{3}\), ta có

\(B=\frac{\sqrt{x}+1}{\sqrt{x}+3}>\frac{1}{3}\\ \Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}+3}-\frac{1}{3}>0\\ \Leftrightarrow\\\frac{3\left(\sqrt{x}+1\right)-\left(\sqrt{x}+3\right)}{3\left(\sqrt{x}+3\right)}>0\\ \Leftrightarrow\frac{2\sqrt{x}}{3\left(\sqrt{x}+3\right)}>0\left(luondungvoix>0\right)\)

Vậy.........