Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ab2c3 + 64ab2
= ab2(c3 + 64)
= ab2(c3 + 43)
=ab2(c - 4)(c2 - 4c + 42)
=ab2(c - 4)(c2 - 4c + 16)
b,27x3y - a3b3y
=y(27x3 - a3b3)
=y((3x)3 - (ab)3)
=y(3x - ab)((3x)2 + 3xab + (ab)2)
=y(3x - ab)(9x2 + 3xab +a2b2)
c,a6 - b6
=(a3)2 - (b3)2
=(a3 - b3)(a3 + b3)
=(a - b)(a2 + ab + b2)(a + b)(a2 - ab +b2)
Mấy bài này bạn chỉ cần biến đổi rồi sử dụng hằng đẳng thức thôi nên cố gắng nha bạn
a) a3+a2c-abc+b2c+b3 =(a3+b3)+(a2c-abc+b2c)=(a+b)(a2-ab+b2)+c(a2-ab+b2)=(a2-ab+b2)(a+b-c)
b) x3-7x-6 = x3+x2-x2-x-6x-6=x2(x+1)-x(x+1)-6(x+1)=(x+1)(x2-x-6)=(x+1)(x-3)(x+2)
c) x3-x2-14x+24=x3-2x2+x2-2x-12x+24=x2(x-2)+x(x-2)-12(x-2)=(x-2)(x2+x-12)=(x-2)(x+4)(x-3)
b: \(x^4+324=x^4+36x^2+324-36x^2\)
\(=\left(x^2+18\right)^2-36x^2\)
\(=\left(x^2+6x+18\right)\left(x^2-6x+18\right)\)
c: \(64a^4+b^8\)
\(=64a^4+b^8+16a^2b^4-16a^2b^4\)
\(=\left(8a^2+b^4\right)^2-16a^2b^4\)
\(=\left(8a^2-4ab^2+b^4\right)\left(8a^2+4ab^2+b^4\right)\)
g: \(a^6-b^6=\left(a^3-b^3\right)\left(a^3+b^3\right)\)
\(=\left(a-b\right)\cdot\left(a^2+ab+b^2\right)\left(a+b\right)\left(a^2-ab+b^2\right)\)
a) \(x^6-y^6=\left(x^3-y^3\right)\left(x^3+y^3\right)=\left(x+y\right)\left(x-y\right)\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)\)
b) \(x^6-y^3=\left(x^2-y\right)\left(x^4+x^2y+y^2\right)\)
c) \(x^4-27x=x\left(x^3-27\right)=x\left(x-3\right)\left(x^2+3x+9\right)\)
d) \(27x^5+x^2=x^2\left(27x^3+1\right)=x^2\left(3x+1\right)\left(9x^2-3x+1\right)\)
e) \(x^8-x^2=x^2\left(x^4-1\right)=x^2\left(x^2-1\right)\left(x^2+1\right)=x^2\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
f) \(\left(x+y\right)^3-x^3-y^3=3x^2y+3xy^2=3xy\left(x+y\right)\)
g) \(\left(x+y\right)^3-\left(x-y\right)^3=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\left(2x^2+2y^2+x^2-y^2\right)\)
a , \(81x^2y+18xy^2+27x^2y^2\)\(=9xy\left(9x+2y+3xy\right)\)
b. \(4x^3+x^2+x=x\left(4x^2+x+1\right)\)
c. \(x^6+y^6=\left(x^2\right)^3+\left(y^2\right)^3\)\(=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)\)
d.
e. \(\left(x+y\right)^3-\left(x-3\right)^3\)\(=x^3+3x^2y+3xy^2+y^3-x^3+9x^2-27x-y^3\)
\(=3x^2y+3xy^2+9x^2-27x\)
\(=3x\left(xy+y^2+3x-9\right)\)
h. \(x^2+x+\frac{1}{4}=\)\(4x^2+4x+1=\left(2x+1\right)^2=\left(2x+1\right)\left(2x+1\right)\)
i.
\(a^3+a^2c-abc+b^2c+b^3\)
\(=\left(a^3+b^3\right)+\left(a^2c+b^2c-abc\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+\)\(c\left(a^2+b^2-ab\right)\)
\(=\left(a^2+b^2-ab\right)\left(a+b+c\right)\)
b) \(64x^3+1=\left(4x+1\right)\left(16x^2-4x+1\right)\)\
c) \(x^3y^6z^9-125=\left(xy^2z^3-5\right)\left(x^2y^4z^6+5xy^2z+25\right)\)
d) \(27x^6-8x^3=x^3\left(27x^3-8\right)=x^3\left(3x-2\right)\left(9x^2+6x+4\right)\)
e) \(x^6-y^6=\left(x^3-y^3\right)\left(x^3+y^3\right)=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
b)
\(=y\left[\left(3x\right)^3-\left(ab\right)^3\right]=y\left(3x-ab\right)\left(9x^2+3abx+a^2b^2\right)\)
a)
\(=ab^2\left(c^3+4^3\right)=ab^2\left(c+4\right)\left(c^2-4c+16\right)\)