K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(x^4+324=x^4+36x^2+324-36x^2\)

\(=\left(x^2+18\right)^2-36x^2\)

\(=\left(x^2+6x+18\right)\left(x^2-6x+18\right)\)

c: \(64a^4+b^8\)

\(=64a^4+b^8+16a^2b^4-16a^2b^4\)

\(=\left(8a^2+b^4\right)^2-16a^2b^4\)

\(=\left(8a^2-4ab^2+b^4\right)\left(8a^2+4ab^2+b^4\right)\)

g: \(a^6-b^6=\left(a^3-b^3\right)\left(a^3+b^3\right)\)

\(=\left(a-b\right)\cdot\left(a^2+ab+b^2\right)\left(a+b\right)\left(a^2-ab+b^2\right)\)

6 tháng 11 2017

Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

6 tháng 11 2017

Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

13 tháng 9 2020

a) \(x^6-y^6=\left(x^3-y^3\right)\left(x^3+y^3\right)=\left(x+y\right)\left(x-y\right)\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)\)

b) \(x^6-y^3=\left(x^2-y\right)\left(x^4+x^2y+y^2\right)\)

c) \(x^4-27x=x\left(x^3-27\right)=x\left(x-3\right)\left(x^2+3x+9\right)\)

d) \(27x^5+x^2=x^2\left(27x^3+1\right)=x^2\left(3x+1\right)\left(9x^2-3x+1\right)\)

e) \(x^8-x^2=x^2\left(x^4-1\right)=x^2\left(x^2-1\right)\left(x^2+1\right)=x^2\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)

f) \(\left(x+y\right)^3-x^3-y^3=3x^2y+3xy^2=3xy\left(x+y\right)\)

g) \(\left(x+y\right)^3-\left(x-y\right)^3=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\left(2x^2+2y^2+x^2-y^2\right)\)

16 tháng 10 2016

\(2x^2+3x-27=2x^2-6x+9x-27=2x\left(x-3\right)+9\left(x-3\right)=\left(2x+9\right)\left(x-3\right)\)

\(x^3-7x+6=x^3-x-6x+6=x\left(x^2-1\right)-6\left(x-1\right)=x\left(x-1\right)\left(x+1\right)-6\left(x-1\right)=\left(x-1\right)\left(x^2+x-6\right)\)

\(x^3+5x^2+8x+4=x^3+x^2+4x^2+8x+4=x^2\left(x+1\right)+4\left(x^2+2x+1\right)=x^2\left(x+1\right)+4\left(x+1\right)^2\)

\(=\left(x+1\right)\left(x^2+4x+4\right)=\left(x+1\right)\left(x+2\right)^2\)

\(27x^3-27x^2+18x-4=27x^3-9x^2-18x^2+6x+12x-4\)

\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)=\left(3x-1\right)\left(9x^2-6x+4\right)\)

29 tháng 7 2016

b)

\(=y\left[\left(3x\right)^3-\left(ab\right)^3\right]=y\left(3x-ab\right)\left(9x^2+3abx+a^2b^2\right)\)

29 tháng 7 2016

a)

\(=ab^2\left(c^3+4^3\right)=ab^2\left(c+4\right)\left(c^2-4c+16\right)\)

9 tháng 8 2016

a)=-4x2+8x-4

=-[(2x)2-8x+4]

=-(2x-2)2

9 tháng 8 2016

b)=x3-3x2+3x2-9x+2x-6

=x2(x-3)+3x(x-3)+2(x-3)

=(x-3)(x2+3x+2)

=(x-3)(x2+x+2x+2)

=(x-3)[x(x+1)+2(x+1)]

=(x-3)(x+1)(x+2)

20 tháng 7 2018

a)    \(x^3+3x^2y-9xy^2+5y^3\)

\(=x^3-3x^2y+3xy^2-y^3+6x^2y-12xy^2+6y^3\)

\(=\left(x-y\right)^3+6y\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)^3+6y\left(x-y\right)^2\)

\(=\left(x-y\right)^2\left(x+5y\right)\)

20 tháng 7 2018

b)    \(27x^3-27x^2+18x-4\)

\(=27x^3-9x^2-18x^2+6x+12x-4\)

\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)

\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)

c) \(2x^3-x^2+5x+3\)

\(=2x^3+x^2-2x^2-x+6x+3\)

\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)

\(=\left(2x+1\right)\left(x^2-x+3\right)\)

5 tháng 9 2018

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Ta có :

\(a^3+b^3+c^3-3abc\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b^2\right)-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

P/s tham khảo nha

hok tốt

2 tháng 10 2016

a) \(4a^3b^3c^2x+12a^3b^4c^2-16a^4b^5cx\)

\(=4a^3b^3c\left(cx+3bc-4ab^2x\right)\)

b) \(\left(b-2c\right)\left(a-b\right)-\left(a+b\right)\left(2c-b\right)\)

\(=\left(b-2c\right)\left(a-b+a+b\right)=2a\left(b-2c\right)\)

c) \(3a\left(a+5\right)-2\left(5+a\right)=\left(a+5\right)\left(3a-2\right)\)

d) \(\left(x+1\right)^2-3\left(x+1\right)=\left(x+1\right)\left(x+1-3\right)\)